
Towards Dynamically Monitoring Android Applications on
Non-rooted Devices in the Wild

Xiaoxiao Tang
Singapore Management University

xxtang.2013@smu.edu.sg

Yan Lin
Singapore Management University

yanlin.2016@smu.edu.sg

Daoyuan Wu
Singapore Management University

dywu.2015@smu.edu.sg

Debin Gao
Singapore Management University

dbgao@smu.edu.sg

ABSTRACT

Dynamic analysis is an important technique to reveal sensitive be-

havior of Android apps. Current works require access to the code-

level and system-level events (e.g., API calls and system calls) trig-

gered by the running apps and consequently they can only be

conducted on in-lab running environments (e.g., emulators and

modi�ed OS). The strict requirement of running environment hin-

ders their deployment in scale and makes them vulnerable to anti-

analysis techniques. Furthermore, current dynamic analysis of An-

droid apps exploits input generators to invoke app behavior, which,

however, cannot provide su�cient code coverage.

We propose to dynamically analyze app behavior on non-rooted

devices used by the public so that it is possible to analyze dynami-

cally in scale without input generators. By doing so, we also max-

imize the code coverage since the app behavior is invoked by real

users of the apps. To achieve such a goal, we build UpDroid, a sys-

tem for detecting sensitive behavior without modifying Android

OS, rooting the device, or leveraging emulators. UpDroid detects

sensitive events by monitoring the changing of public resources on

the device, instead of accessing low-level events that require root-

ing or system modi�cation. To identify the apps that trigger the

detected events, UpDroid formulates the identi�cation as a rank-

ing problem and adopts learning to rank technique to solve it. Our

experimental results demonstrate that UpDroid can successfully

detect the use of 15 out of 26 permissions that are labeled danger-

ous in the o�cial Android documentation. We also compare Up-

Droid with API hooking which can theoretically capture all sen-

sitive behavior but requires root permission and system modi�ca-

tions. Results show that UpDroid can still achieve 70% coverage of

API hooking even without root permission or any system modi�-

cations.
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1 INTRODUCTION

Android has been the most popular mobile system which occu-

pies over 85% market share in Q1 2017 [19]. Along with the popu-

larity, the Android community also faces various threats, such as

malware[42], pirated apps [41] and so on. One of the most impor-

tant mitigation techniques for these threats is the e�ective and pre-

cise dynamic analysis to reveal the underlying sensitive behavior

of apps.

Most of existing techniques conduct analysis on emulators or

modi�ed systems. Analyzing under these environments requires

input generation tools [1, 17, 23, 34] to automatically execute the

target apps. However, most input generators can only provide a

random series of events, e.g., touching on the screen, to mimic real

users’ behavior. The random behavior generated by these tools can

hardly match the pattern of the real app usage to successfully in-

voke certain functionalities, e.g., registration. Hence, input gener-

ators cannot provide as wide code coverage as humans. Choud-

hary et al. compared several popular monkey tools and found that

the best coverage that these tools can reach is 40% [10]. Mean-

while, anti-analysis techniques [20, 31] allow apps to recognize

the running environment and hide their sensitive behavior accord-

ingly. For example, apps can detect whether the running environ-

ment is emulated based on the GPS info or IMEI number. Moreover,

anti-analysis techniques can choose to trigger sensitive behavior

only under speci�c circumstances that have no dependencies on

program inputs, e.g., after receiving an SMS, at a particular time

slot, or when receiving a remote command [32]. Both the insu�-

cient code coverage of the input generators and the anti-analysis

features of the target apps hinder existing dynamic analysis from

invoking the potential behavior of them. Theoretically, to enable

large-scale deployment and evade anti-analysis techniques, the op-

timal solution is to conduct the analysis on devices used by the gen-

eral public. In this paper, we study towhat extent dynamic analysis

can be applied to non-rooted and unmodi�ed devices.

Dynamically analyzing apps’ behavior on such devices is chal-

lenging. Previous tools [6, 8, 12, 29, 30, 37] adopt API tracing, sys-

tem call tracing and so on, to infer the underlying behavior of the

apps. As low-level information (e.g., API call or system call) com-

monly used by previous works is not accessible on non-rooted de-

vices, these techniques cannot be applied to devices used by the
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public. To deal with this problem, we propose a system called Up-

Droid. Instead of logging low-level events, we monitor the state

changing of di�erent types of public resources on the target de-

vice. The changes convey information about the sensitive behav-

ior of the apps. For example, we can monitor message sending be-

havior by detecting the newly added rows of the content provider

content://sms. The changing event corresponds to behavior that

has been successfully performed on the devices, which is di�erent

from detecting attempts of actions through tracing API calls. Un-

like existing works which can hook into the apps, monitoring the

state changes of public resources brings another challenge – iden-

tifying the apps that trigger the monitored events. Hence, we use

machine learning techniques to build a model for identifying the

apps at runtime.

UpDroid can monitor various events including making phone

calls, accessing the camera, reading/writing �les and so on. It achieves

around 80% precision in identifying the apps that trigger the ob-

served events. We compare UpDroid with the traditional API hook-

ing to study how far UpDroid can go in covering di�erent types

of behavior and how it is di�erent from the traditional hooking

method. Experimental results demonstrate that the events UpDroid

can capture cover 15 out of 26 dangerous permissions, while API

hooking covers 21. The permissions covered by UpDroid contain

the popular ones used by both malware and benign apps. From

tests on several popular apps, we observe that UpDroid detects the

result-based events and API hooking misses some because of the

incompleteness of the sensitive API list.

The main contributions of this work are as follows.

• Wepropose a dynamic analysis system named UpDroid that

is applicable to unmodi�ed and non-rooted devices used by

the public.

• We propose several methods for monitoring di�erent types

of sensitive behavior based on the state changing of public

resources on the devices.

• We propose to use a machine learning technique – learn-

ing to rank, to establish the relationship between running

apps and the detected events. This method addresses the

challenge of app identi�cation on unmodi�ed devices.

• WecompareUpDroidwith the traditional API tracingmethod.

The result shows that UpDroid can handle most of the cases

that API tracing can handle and stands out in revealing the

behavior that has been successfully performed.

The rest of the paper is organized as follows: Section 2 intro-

duces the background knowledge and motivation of this work. Sec-

tion 3 presents the framework of UpDroid. Section 4 and Section 5

discuss the detailed techniques. Section 6 presents the comparison

between UpDroid and API hooking. Section 7 presents the capa-

bility analysis of UpDroid. Section 8 discusses the related work.

Finally, Section 9 concludes this paper with future directions.

2 BACKGROUND AND MOTIVATION

In this section, we introduce some background information for this

work and present the current state of sensitive behavior monitor-

ing on Android to motivate this work.

2.1 Resources and Observers

Android has mature security protection mechanisms based on its

permissionmodel and the security features inherited from the Linux

kernel. Guarded by these mechanisms, third-party apps have lim-

ited access to the static and runtime resources of the device. Nor-

mally, only with legal permission declaring and requesting an app

could access the protected resources and perform sensitive behav-

ior. In this paper, we propose to monitor state changing of four cat-

egories of resources which are normally available for third-party

apps to detect the sensitive behavior.

Content Provider. Content provider is an app component pro-

vided by Android for managing access to a structured set of data. It

is often used to store users’ personal information, such as SMS, call

logs, contact information and so on [15]. Content provider encap-

sulates the data and providesmechanisms for security.With proper

permission, third-party apps can access the content providers that

are open to external apps. Various functionalities are implemented

with content providers, e.g., the default app for sending and receiv-

ing SMS uses content provider to store the SMS logs. Android pro-

vides the ContentObserver API for receiving callbacks of changes

to a content provider to monitor the content provider events. For

example, a malware named HongTouTou uses this API to monitor

the SMS content provider and delete particular SMS according to

the changes [38].

External Storage. The �le system of Android inherits that of the

Linux kernel. The �les are protected with read/write/execute per-

mission for each user. Therefore, on non-rooted devices, we can

only monitor the �les or directories which are readable to third-

party apps. For example, we cannot monitor system �les under

/data/ directory, since the external apps don’t have the read per-

mission. External storage (known as the /sdcard directory) is a

platform-speci�c�le systemmodule onAndroid, which is public to

third-party apps . To access external storage, apps always need per-

mission READ_EXTERNAL_STORAGE or WRITE_EXTERNAL_STORAGE.

In this work, we focus on monitoring external storage directory.

Previousworks use FileObserver to notify the �le system changes [18].

Interrupt Statistics. The logs of the interrupts raised to the ker-

nel are also readable to third-party apps through a virtual �le in-

terface – /proc/interrupts. With this interface, users can obtain

information about how many interrupts have been received by the

CPU since booting. Previous work [13] uses this interface to infer

user’s sensitive information, e.g., unlock pattern. We can use this

interface to observe the use of di�erent resources on the device,

e.g., the camera, the Bluetooth, the NFC and so on. More details

can be found in Section 4.

Network. Network is another kind of resource for users to ac-

cess during runtime. With INTERNET or ACCESS_NETWORK_STATE

permission, apps can obtain the connection state, open URLs, or

send/receive TCP/UDP packets. To monitor the network activities,

previous work MopEye [35] leverages VpnService API to inter-

cept all tra�c initiated from apps on the devices. This API is de-

signed for app developers to build VPN apps.

Although we can observe these resources to represent sensitive

events on the device, identifying the apps that trigger the events is
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still a mystery. In this paper, we integrate these observers to build

a monitor for capturing the sensitive events on the devices and use

machine learning techniques to identify the initiator of them.

2.2 Motivation

Table 1 lists existing works about dynamic analysis of sensitive

behavior. We can observe that they need to use API calls, system

calls, and other low-level events to reveal the underlying behavior

of the target apps. For example, CopperDroid [30] observes and dis-

sects the system calls made by an app to reconstruct the behavior,

e.g., �le operations. A majority of these works are based on in-lab

running environment, including VM (Virtual Machine)-based em-

ulators, modi�ed OS/Android internals, and rooted devices.

Table 1: Existing tools for analyzing sensitive behavior of

Android apps

Tool Platform Features

DroidScope [37] QEMU based Emulator
API call, system call, Dalvik
instruction and so on.

CopperDroid [30] QEMU based emulator
API constructed from system
call

VetDroid [40] Modi�ed system API call

M. Karami et al. [21]
Any platform with
instrumented App

System call

DroidBox [22] Modi�ed system API call

Relying on the in-lab running environment, previous work re-

quires input generation tools [17, 23] to automatically run the tar-

get apps. However, the event series generated by these tools cannot

match the logic of mobile apps which is usually complicated, e.g.,

most apps require registration following strict commands. Choud-

hary et al. present that the maximum coverage of popular input

generator tools is only 40% even with su�cient time for running

the apps [10]. Our intuition is that humans may be more success-

ful in invoking the relevant functionalities of apps, and thus can

achieve better code coverage with enough time and a large num-

ber of users. On another hand, app developers, especially those

who design malware, would not prevent their apps’ behavior from

being triggered under real execution environments. Hence, deploy-

ing dynamic analysis to public users for crowdsourcing solves the

code coverage problem. Besides the coverage problem, running on

emulators cannot analyze some environment sensitive apps. Petsas

et al. [27] proposed a range of techniques to evade dynamic analy-

sis in the emulated Android environment. With these techniques,

apps can bypass the analysis of the tools, e.g., CopperDroid and

DroidScope.

In this paper, we introduce our dynamic analysis system named

UpDroid. It gathers data from users’ daily running traces and gen-

erates sensitive behavior reports for the apps.

3 SYSTEM OVERVIEW

Figure 1 shows the framework of UpDroid, which consists of two

major components: the monitoring module on the users’ devices

and the analysis module on the server side. We place two mon-

itors on Android devices to monitor sensitive behavior (e.g., ac-

cessing the camera) and collect runtime status (e.g., CPU usage)

of running apps. The data collected by both monitors is logged

with time stamps. The event monitor detects changes to resources

which can be accessed by third-party apps, e.g., the �le system, to

reveal the apps’ behavior. We choose to use these changes to rep-

resent the sensitive behavior as low-level events are not accessible

on non-rooted devices. However, we cannot identify the initiating

app for the detected events without penetrating to apps or the sys-

tems. Hence, in the analysis module, we build an app identi�cation

model with machine learning techniques to distinguish the initiat-

ing app from all running apps. We use learning to rank to train the

model with data from real users as presented in Section 5. We take

sensitive events and the corresponding runtime status of the apps

as inputs to identify the initiating apps for the monitored events

and generate behavior reports for the apps. In the following two

sections, we will present the technical details of the event monitor-

ing and how we identify the initiating app for each event.

Public Devices

Server

Model Builder

App Identification 

Model

Runtime Analyzer

Runtime Info

Monitor

Events

Runtime Info

Behavior

Report

Event Monitor

Content 

Observer

File 

Observer

Network 

Observer

Interrupt 

Observer

Figure 1: Framework of the sensitive behavior monitoring

system - UpDroid.

4 EVENT MONITORING

This section describes howUpDroidmonitors sensitive events with-

out penetrating to either the apps or the Android internals on non-

rooted phones. To reveal the behavior of the apps, UpDroid pas-

sively captures the events triggered by sensitive behavior. Figure 2

presents four types of sensitive behavior that can be monitored by

UpDroid. The behavior is categorized by the resources, e.g., the �le

system, it manipulates. For example, accessing the camera raises a

particular interrupt, so it belongs to the interrupt-based behavior.

We use di�erent methods to monitor di�erent categories of behav-

ior.

4.1 Content Observer

UpDroid uses the ContentObserver API to capture the behavior

that changes content providers. The method registerContentOb-

server(Uri uri, boolean notifyForDescendants, ContentO-

bserver observer) is used to register a content observer with the

corresponding URI, e.g., content://sms for observing SMS con-

tent. When an event is detected, the onChange() method will be

triggered. The ContentObserver only reports whether a content

provider is changed, but not what has been changed. Hence, we log

the monitored content provider and compare the updated provider

with that at a previous timestamp after receiving a change noti�-

cation, in order to get detailed information for inferring the apps’
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Figure 2: Di�erent categories of behavior that UpDroid can

monitor

behavior. For example, row adding of SMS content provider with

entry type=0 represents sending out an SMS, and row adding with

entry type=1 represents receiving an SMS. The entries for each

row also provide information, such as when the SMS is sent and

the recipient of the SMS. To �nd all observable content providers,

we use PackageManager to list all providers which can be accessed

by external apps. For each provider, we query the corresponding

database to �nd all table names which is also used as the path pre-

�xes of the URIs of providers. From Android 6.0.1, we �nd 21 sys-

tem provided content providers. Axplorer [4] can also identify the

system content providers that are protected by permissions, but it

does not �lter out the ones that can only be accessed by the sys-

tem apps. Theoretically, UpDroid canmonitor all content providers

with the required permissions. However, due to the overhead of

logging and comparing the content providers, UpDroid only ob-

serves four of the most common and signi�cant content providers,

including SMS, call log, contacts and calendar events.

4.2 File Observer

To monitor events related to the �le system, UpDroid uses File-

Observer API to monitor the �les and directories on the exter-

nal storage. This API is provided by Android to capture changes

to a single �le or a directory. Event masks (e.g., CREATE, DELETE

and MODIFY) are used to specify what kind of operation has been

performed on the monitored �le or directory. A complete list of

the event masks can be found in Android API reference [16]. The

onEvent() method will be triggered when an event to the �le or

directory is observed. Since this API only supports single �le or

directory monitoring, we recursively traverse the monitored di-

rectory and register �le observer for each �le or directory under

it. Similar to ContentObserver, FileObserver only reports the

events but not the changing content. For example, FileObserver

does not report how the �le is modi�ed when it captures a MODIFY

event. Backing up the target directory is a possible solution to get

detailed information about the events, but this may bring in too

much space and runtime overhead. Hence, UpDroid only observes

di�erent types of events to the �les in the external storage and

ignores the detailed changes to them.

4.3 Interrupt Observer

A novel method we propose for observing events is to sample the

interrupts and monitor the changes of interrupt numbers. Android

inherits the interrupt mechanism of Linux. Interrupt represents the

situation where CPU interrupts the running program to handle a

request raised by an external hardware device. When the devices

(e.g., camera, Bluetooth and temperature sensor) detect physical

events, they raise interrupt requests. Then, the programmable in-

terrupt controller (PIC) will process these requests and send them

to the CPU. The CPU will �nally respond to the interrupt requests.

Each speci�c interruptwill be registered to the systemwith a unique

Interrupt Request Line (IRQ) number, through which devices can

pass the interrupt to the processor. The virtual �le /proc/interrupts

provides the interrupt request lines claimed by the devices. Each

line shows the unique IRQ number, the number of interrupts han-

dled by each CPU, the PIC, and the device name.

To identify the events from the number of interrupts, we sam-

ple the /proc/interrupts �le each 100ms and compare it with

the previous sampling. Since most hardware devices have a corre-

sponding IRQ line, we can infer the running status of hardware

through monitoring the changes to the numbers of the interrupts.

The increases of the interrupts represent the sensitive behaviors.

For example, accessing the camera increases the number of inter-

rupt number 83 on Nexus 6P. Using Bluetooth to send a �le to an-

other device will increase interrupt 503 continuously for a period.

In UpDroid, we choose to monitor the following �ve common de-

vices: camera, GPS, Bluetooth, NFC and video decoder.

Most device names shown in /proc/interrupts are codedwith

the hardware model names or abbreviations, thus are di�cult to

identify. For example, onHUAWEINexus 6P, pn548 is the interrupt

name of NFC and atmel_mxt_ts is for the touchscreen. Moreover,

there are di�erent IRQ lines with the same device name. For ex-

ample, IRQ numbers 83 to 86 have the same device name csid, but

only number 83 represents the camera device interrupt. Hence, the

interrupt to hardware device mapping relies on the model names

of the hardware devices which are di�cult to obtain automatically.

Eachmobile device has its ownmapping between interrupts and

hardware devices. Hence, we need to test the hardware devices and

analyze the interrupt sampling to identify the interrupt mapping

for each device model.We �rst analyzed several devices we already

have, such asNexus 6 andNexus 6P. To cover other devices, we con-

duct a user study (named interrupt study) to obtain the mappings

for them. Each UpDroid user needs to �nish this study to get the in-

terrupt mapping. The users need to perform certain operations to

test the hardware devices on the phones. Some of the hardware de-

vices can be tested automatically with proper programming. For

example, we write a program to open the camera and take pho-

tos automatically. The others require the users’ manual tests since

the permission of these devices are very strict. For instance, NFC

can only be manually turned on/o� by the user for security con-

sideration of Android. While the user is performing the tasks, the

monitoring app samples the interrupts. By observing the changing

pattern of the interrupts, we can identify the one that corresponds
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to the hardware devices. For each hardware, we need �ve traces

for manually identifying the interrupt patterns. From the recruited

participants, we have identi�ed interrupts for 19 Android devices.

4.4 Network Observer

UpDroid monitors the networking behavior through VpnService

API, which leverages the TUN virtual network device to capture

the TCP and UDP packets sent by the apps. In this work, we lever-

age MopEye’s technique to identify the package initiators through

the proc �le /proc/net/tcp6|tcp|udp|udp6 [35].

5 INITIATOR IDENTIFYING

The monitoring techniques presented in the previous section are

not able to identify the app that triggers the detected event since

the APIs used by the monitors are designed for observing the re-

sources. AlthoughMopEye [35] provides an intelligent solution for

app identi�cation on network events, it is not applicable to other

events, e.g., interrupt-based events. Hence, UpDroid leverages a

machine learning technique, learning to rank, to build an app iden-

ti�cation model which is generic for all events. This model takes

the detected event and the runtime information of the running

apps as input, and ranks all the running apps to �nd out which

is the one that initiates the detected event.

The overview of the model learning is presented in Figure 3. To

get the ground truth for the model learning, we recruit Android

users as the inspectors to identify the apps that trigger the detected

events. After pre-processing the data from the inspectors and the

monitors, we use the learning to rank technique to train the iden-

ti�cation model with the feature vectors.

Server

Off-line Model Learning

In-lab Devices

Model Training with

Learning to Rank

App Identification Model

Event Monitor

Content 

Observer

File 

Observer

Network 

Observer

Interrupt 

Observer

Runtime Info

Monitor

Data Pre-processor

Data Filter

Map Generator

Process Combination

Feature ExtractionEvents

Runtime

Info

Feature Vectors

Inspectors

App Labeling

Figure 3: Overview of building the app identi�cation model

5.1 App Status Monitoring

The runtime info monitor on the device collects information (e.g.,

CPU usage) about the running apps. We use the information as

the feature of each app to infer whether it is the one that invokes

the detected event. UpDroid uses the ps command to obtain the

runtime information of the apps. It leverages the /proc/stat and

/proc/$PID/stat interfaces to provide processes’ runtime status,

such as CPU usage, NICE value, virtual memory usage and so on.

It allows third-party apps to access other processes’ runtime info

on most Android devices. We obtain the result from ps command

from the monitoring app each 100ms. This time interval ensures

both the quality of the data and the performance of the device.

One problem with using ps command is that the runtime sta-

tus is for processes while identifying the process for an detected

event is nearly impossible for users. For each occurred event, nor-

mal users can easily select the correct app that invokes the event,

but can hardly tell which process without any knowledge about

the app implementation. In this case, we consider app rather than

process as the initiator of the detected events. We integrate the run-

time status from processes from one app and get the ground truth

of the initiators from the inspectors. More details of integrating

runtime info from di�erent processes can be found in Section 5.3.

5.2 Data Collecting

We collect the data for building the app identi�cation model from

the monitors presented in Section 4 and Section 5.1. The data con-

tains the events and the runtime information of each app when

an event occurs. The missing part is the ground truth that which

one among all the running apps invokes the detected event. To get

the ground truth, we recruit Android users to help to collect the

data and label the app in real-time. We gather three types of infor-

mation from the inspectors’ devices - the events, the runtime info,

and the initiating apps selected by the inspectors. We conduct a

user study (named initiator study)1 to collect and label the data. In

this study, each participant will be asked to install our monitoring

app published on Google Play and help to identify the apps at run-

time. The monitor will capture the events and log the runtime app

info. It would raise noti�cations to the participants (or inspectors)

when it captures an event on the device. For each event, we pro-

vide the event type, the event content and the time when the event

is captured to the participant. The participant responds to the no-

ti�cation and chooses the app that invokes the event based on the

provided info. To check the integrity of the data, we propose the

following policies to verify the participants’ responses:

(1) The selected app should be on the list of the running apps.

(2) The selected app should have the permission for the de-

tected event, e.g., the app chosen for a camera event needs

to be granted with the CAMERA permission.

(3) The selection should be �nished within ten mins after the

noti�cation, to make sure the user selects with a fresh mem-

ory.

We have recruited ten users since November 2017 to participate

in the initiator study for data collection and labeling. The partici-

pants are Android phone users above 18 years old. Participants in-

stall the inspecting app on their own devices and identify initiators

for at least 20 detected events. During the study, participants need

to have at least ten apps they commonly use installed on their de-

vices. We use the above policies to �lter the responses from these

participants. In total, we have collected 300 events with initiator

1Both the interrupt study and the initiator study have been approved by IRB in May
2017
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identi�ed. The initiators of these events correspond to 40 popular

apps, e.g., Instagram and WhatsApp.

5.3 Data Pre-processing

From the monitors and the inspectors, we obtain the raw data for

the analysis, including the detected events, runtime information

of apps and the app identi�ed by the inspectors. To get the labeled

data, we pre-process the raw data in three steps. First, we obtain

runtime app info which can represent the running apps’ status for

each detected event. We choose the nearest samples of runtime

info before and after each detected event based on the timing info.

Hence, for each event, we know the apps’ current state and how it

changes after the event occurs.

Table 2: Features for running apps and the process combina-

tion rules

Feature Description Type Combination Rule

VSIZE Size of virtual memory used Integer average
RSS Resident set size Integer average
CPU CPU usage Integer average
SCHED Schedule of the process Integer average
PRIO Priority Integer average
NICE Nice value Integer average
PCY Background/Foreground Info Binary or
PC Status of processes Binary or
UID Whether the app is system app Bool none

Then, we combine runtime info from di�erent processes of an

app. As mentioned in Section 5.1, we collect the apps’ runtime in-

formation by ps command which provides information about each

running process, while app is the analysis target. Hence, we com-

bine the runtime information of di�erent processes from the same

app. Table 2 shows the features we collected for each app and how

they are combined from di�erent processes. We use the di�erence

of runtime information before and after the event as the feature

vectors. Here is an example of extracting feature f1 for an app. App

a has two processes: p1 and p2. Event e is observed at time t . The

process sampling provides the nearest process info logs at time t1
and t2, while t1 6 t 6 t2. The f1 value of p1 is v1 at t1 and v2 at

t2. The f1 value of p2 is u1 at t1 and u2 at t2. Hence, the processed

feature f1 of a for e is:

f1a = AVG (v2 −v1, u2 − u1)

Lastly, we identify the app that triggers it from the users’ re-

sponses and label all running apps. For each event, we label “1” if

an app is selected for it and label “0” if it is not selected.

5.4 Modelling and Precision

The machine learning technique we use for identifying the app is

learning to rank [9]. Our scenario is a ranking problem, where we

need to select an app that has the highest possibility of invoking

the event among a list of running apps. We use RankLib [11], a

library that contains several popular ranking algorithms, for the

modeling and testing. The model built by RankLib is generic for

all apps and all events.

We randomly pick two thirds of the data samples as the train-

ing data and the rest as the testing data. We tried all of the eight

Figure 4: The performance of di�erent ranking algorithms

in RankLib library.

algorithms in RankLib with di�erent con�gurations and compared

their performance. Figure 4 presents the precision, the percentage

of events the initiator of which can be successfully identi�ed, of

the models built by di�erent ranking algorithms. With the Lamb-

daMART algorithm, the precision of UpDroid can reach 80%, and

the false alarm (the situation where the app ranked �rst does not

cause the event) rate is around 20%. From our observation, in one

data sample, di�erent apps may have the same ranking score, and

this brings in a lot of false alarms. Hence, we list the appswith top1,

top2 or top 3 ranking scores to see whether they contain the one

selected by the inspectors. The precision comparison of the eight

algorithms is presented in Figure 4.

6 COMPARISON WITH API HOOKING

Various tools [22, 30, 40] analyze sensitive APIs to reveal the un-

derlying behavior of the target apps. For example, sendTextMes-

sage() reveals the behavior of sending SMS. These tools log the

APIs called by an app and record their parameters and return val-

ues by hooking all sensitive APIs, which typically requires root

permission or modi�cation to Android internals. In this section,

we present the comparison between UpDroid and the API hook-

ing method on capturing the sensitive behavior.

6.1 Current State of API hooking

To analyze sensitive behaviors through API hooking, we need a

list of sensitive APIs and the permissions they require to de�ne

the behavior. Sensitive API refers to the API protected by certain

permission. Since 2011, researchers have studied to extract the list

of sensitive APIs from Android source code [3, 4, 7, 14]. From exist-

ing works, static analysis, including code analysis and annotation

analysis, is believed to be the most e�cient and e�ective method.

However, from our investigation, none of the current methods can

provide a complete list of the sensitive APIs. The popular tool Ax-

plorer [4] provides an accurate list of the Android APIs in the An-

droid framework source code, but it misses the analysis of Java

APIs and the APIs whose permission checking is in native code.

Some popular sensitive APIs, such as android.hardware.camera-

2.CameraManager.openCamera(), are not in the list. DPSPEC [7]
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analyzes the annotation of Android source code to identify sensi-

tive APIs. However, it only focuses on the APIs protected by dan-

gerous permissions and needs manual identi�cation to obtain the

list. Another work, android-a2p [14], is also based on annotation

analysis. It is released on GitHub and is accurate but not complete.

In order to cover more APIs for capturing a complete list of sensi-

tive behaviors, we combine the lists from these three works in the

comparison.

API hooking is also e�ective in capturing accessing to sensi-

tive content providers and passing sensitive Intent. DPSPEC and

Pscout [3] list the content providers and intents which need dan-

gerous permissions. We also include these sensitive components

in our comparison.

In this work, we use an open source tool named EagleEye [24]

which is built on the Xposed framework [36] to hook the sensitive

APIs and the APIs for accessing content providers and sending in-

tents on a rooted device.

6.2 Permission Coverage Comparison

To see how far UpDroid can go in covering di�erent categories

of events, we analyze the permission coverage of UpDroid and

that of API hooking (including hooking sensitive APIs, content

providers, and Intents). We use 26 dangerous permissions and 44

normal permissions crawled from Google’s o�cial documentation

for the comparison. If any sensitive API in the list uses certain

permission, we consider that API hooking covers this permission.

Also, if UpDroid can capture one kind of behavior which is pro-

tected by a permission, we consider that UpDroid covers this per-

mission. This comparison may have inaccuracy since neither sen-

sitive API nor UpDroid cover all the cases that a permission is used.

However, this analysis still gives us a hint about what kind of be-

havior UpDroid and API hooking can capture.

The comparison of dangerous permission coverage is presented

in Table 3. The list of sensitive API/Content Provider/Intent we

obtain from previous works covers 21/26 dangerous permissions,

while UpDroid covers 15/26. And 14 permissions can be covered by

bothmethods. As presented in Table 3, most of the ones that cannot

be captured by UpDroid are about reading data, e.g., READ_CAL-

ENDAR and READ_PHONE_NUMBERS. This is because UpDroid focuses

on the behavior that changes the state of resources on the device

while reading normally does not cause any change to them. The

comparison of normal permission coverage can be found in Table 5

from Appendix.

6.3 Event Details Comparison

API hooking can provide details about each event or behavior based

on the parameters and return value of an API, while UpDroid has a

di�erent method of providing detailed information for each event.

We present the di�erence of monitoring each category of events

as follows.

Content Provider:While observing content providers, the events

come from the changes to the providers. The detailed information

of the events can be obtained from changes to the rows in the

provider’s table. In the case of SMS activities, API hooking logs

the sendTextMessage() API in apps, while UpDroid observes the

content://sms content provider. Table 4 shows the information

Table 3: The comparison of dangerous permission coverage

between API hooking and UpDroid. In this table, ✗stands

for none of the permissions in this categorize is covered and

✓stands for all are covered.

Permission
API Hooking

UpDroid
Sensitive

API
Content
Provider

Intent

ACCESS_COARSE_LOCATION ✓ ✗ ✓ ✓

ACCESS_FINE_LOCATION ✓ ✗ ✓ ✓

ADD_VOICEMAIL ✗ ✓ ✗ ✓

ANSWER_PHONE_CALLS ✗ ✗ ✗ ✓

BODY_SENSORS ✗ ✗ ✗ ✗

CALL_PHONE ✓ ✗ ✓ ✓

CAMERA ✓ ✗ ✓ ✓

GET_ACCOUNTS ✓ ✗ ✗ ✗

PROCESS_OUTGOING_CALLS ✗ ✗ ✓ ✓

READ_CALENDAR ✗ ✓ ✗ ✗

READ_CALL_LOG ✗ ✓ ✗ ✗

READ_CONTACTS ✓ ✓ ✗ ✗

READ_EXTERNAL_STORAGE ✓ ✓ ✗ ✓

READ_PHONE_NUMBERS ✗ ✗ ✗ ✗

READ_PHONE_STATE ✓ ✗ ✓ ✗

READ_SMS ✓ ✓ ✗ ✗

RECEIVE_MMS ✓ ✗ ✓ ✓

RECEIVE_SMS ✗ ✓ ✓ ✓

RECEIVE_WAP_PUSH ✗ ✗ ✗ ✗

RECORD_AUDIO ✗ ✗ ✗ ✗

SEND_SMS ✓ ✓ ✓ ✓

USE_SIP ✓ ✗ ✗ ✗

WRITE_CALENDAR ✗ ✓ ✗ ✓

WRITE_CALL_LOG ✗ ✓ ✗ ✓

WRITE_CONTACTS ✗ ✓ ✓ ✓

WRITE_EXTERNAL_STORAGE ✓ ✓ ✗ ✓

Total ✓ 21/26 15/26

Table 4: The SMS event details provided byAPI Hooking and

the content observer of UpDroid

Info API Content Provider

Destination Address ✓ ✓

Source Address ✓ ✓

Message Text ✓ ✓

Sent Intent ✓ ✗

Delivery Intent ✓ ✗

Date Initiate ✓ ✓

Date Sent ✗ ✓

Person ✗ ✓

we can obtain from API hooking and content observing. Hooking

APIs can get more low-level information, such as the Intent for

sending this SMS. UpDroid can get more general information, such

aswhen the SMS request is generated and when the SMS is success-

fully sent out.

Interrupt: The monitoring based on interrupt sampling observes

events from the changing of the number of the corresponding inter-

rupt. It tells whether an event occurs and when it occurs through

the changing pattern. Take Bluetooth interrupt as the example.

Tracing API android.bluetooth.BluetoothAdapter.enable()

can detect turning on of the Bluetooth on the devices. On the other

hand, UpDroid observes it through recognizing a steep increase of

the interrupt. Using Bluetooth continuously (e.g., sharing �les) will

be represented by a continuous slow increase.

External Storage: As presented in Section 4, the information we

can log from the �le observers contains the �le operation and the
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path of the �le in external storage. To log the changes to the �les,

we need to back up the target �les and make a comparison. To

decrease the overhead, we choose only to record the operations

and the paths. Existing API hooking method can hook �le opera-

tion APIs, such as java.io.writer.write(String s). It tells not

only which operation is performed, but also the related content,

e.g., the content that is written to a �le.

Network: In the case of network activities, UpDroid provides lower

level information than API hooking, e.g., a TCP packet is sent by

UID 10080 from 10.0.8.1:38175 to a server at 74.125.24.95:443.

No higher level information, e.g., whether the packet is sent for

loading a webpage, will be provided. The parameters and the type

of the API imply the behavior of the app and the detailed informa-

tion related to the behavior. It allows identifying di�erent opera-

tions from the calledAPI, e.g., android.webkit.WebView.load(S-

tring URL) represents loading a URL to a WebView.

6.4 Behavior Outcome Comparison

API hooking logs each attempt at using an API and needs further

analysis to �nd out whether the called API is successfully invoked

or not. Even with further analysis, it still misses the results of some

app behavior. Contrarily, the four types of events reported by Up-

Droid represent the behavior that had successfully been performed.

This is because itmonitors the changes to public resources that will

be manipulated by the apps’ behavior. Here we compare the di�er-

ences between UpDroid and API hooking in revealing the outcome

of an attempt at performing a certain operation.

API hooking can use several ways to determine whether an API

call is successfully called. The �rst and most apparent one is to

check the return value. For example, android.Bluetooth.Blueto-

othAdapter.enable() returns boolean -“true to indicate adapter

startup has begun, or false on immediate error”. The second way is

to check the exceptions thrown by the API. For example, if send-

TexMessage throws IllegalArgumentException, the message is

not successfully sent because of empty destination address or text.

Anothermore complicatedmethod is to hook the callbacks as stated

in the parameters. For example, android.hardware.camera2.Cam-

eraManager.openCamera(String cameraId, CameraDevice.St-

ateCallback callback, Handler handler) has a parameter

named callback. The callbackwill be invoked once the camera starts.

For some other APIs, the callback is an intent which will be in-

voked after the API is successfully called. Comparing to the prior

twomethods, checkingwhether theAPI call succeeds or not through

the third method needs more advanced API hooking techniques.

These techniques should be able to obtain the callback from the

API’s parameter, hook it and determine whether the callback is in-

voked due to the API call. Hence, we only consider the �rst two

methods in our analysis of the sensitive APIs.

From our analysis of the sensitive APIs, 154 out of the 400 do

not have any implication about the result of the API call. And

among the 154, there are 29 which use the permissions that can be

covered by UpDroid. Among these 29, there are 14 that UpDroid

conveniently reveals the outcome of the attempts. The rest is the

APIs that do not change public resources on the devices. For ex-

ample, android.net.ConnectivityManager.requestNetwork()

requests network but does not send out packages, so the behavior

cannot be detected by UpDroid. UpDroid can determine whether

the behavior of the app changes the resources, but it cannot deter-

mine which API is used to trigger an event. UpDroid places more

emphasis on the result of the app’s behavior, while API hooking

emphasizes more on the attempt of the app’s behavior.

7 CAPABILITY ANALYSIS

In this section, we evaluate the capabilities of UpDroid by analyz-

ing its permission coverage and testing it on several popular apps.

We also present the runtime performance of UpDroid evaluated

with a popular benchmark app.

7.1 Permission Coverage

To evaluate whether UpDroid can detect the sensitive behavior

that requires commonly used permissions, we analyze the permis-

sion usage of both malicious and benign apps. We analyze 2000+

malware samples (chosen from 72 malware families) provided by

AndroidMalware Dataset Project [33] and 3000+ apps downloaded

from the top chart of Google Play. For each permission, we count

the number of apps that declare the permission in the manifest

to �nd out the popular permissions used by malicious and benign

apps. The dangerous permission usage is shown in Figure 5. As pre-

sented, the permissions from WRITE_CONTACTS to ANSWER_PHONE_C-

ALLS can be covered by UpDroid. The results show that UpDroid

covers the widely used permissions. And it cannot cover the ones

for reading private data or the phone states which will not cause

any state changing of the observable resources on the device.

7.2 Runtime Experiments

To evaluate how UpDroid performs at runtime for capturing sensi-

tive behavior, we test it on several popular apps, including a com-

munication appWhatsApp, a social networking app Facebook, and

an online shopping app Lazada. These apps have more sensitive

behavior than most of the malware. We manually run the apps for

�ve minutes while using UpDroid and API hooking to detect the

sensitive behavior.We �nd that UpDroid successfully captures sen-

sitive behavior, such as sending SMS, accessing the camera, open-

ing Bluetooth and so on.

Speci�cally, we present the experiment on WhatsApp which

uses various permissions and compare the results (as shown in Fig-

ure 6) of UpDroid and API hooking. The upper �gure presents the

behavior captured by UpDroid, and the lower one presents the per-

mission usage detected by API Hooking. The upper �gure shows

that UpDroid detects Bluetooth events, camera events, �le opera-

tions and network activities of WhatsApp. Compared to API hook-

ing, UpDroid detects the events whichmanipulate public resources

on Android. For network events, UpDroid detects the packages

sent out or received, while API hooking reports the access to the

network state. Although API hooking can also detect the internet

usage, no internet activity is found due to the incompleteness of

the sensitive API lists. This also happens on the Bluetooth activi-

ties and �le operations. As shown in Figure 6, using Bluetooth is

monitored by UpDroid at the �fth minutes, but it is not observed

by API hooking. UpDroid captures multiple �le system operations

which are not detected by API hooking. It also shows that UpDroid
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Figure 5: Dangerous permission usage of malware samples from AMD and benign apps from GooglePlay
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Figure 6: The runtime analysis results of WhatsApp from UpDroid and API hooking

cannot detect the read permissions like READ_PHONE_STATE and

WAKE_LOCK.

7.3 Performance

To evaluate the runtime overhead of UpDroid, we run the monitor-

ing module of UpDroid on Nexus 6P with Qualcomm Snapdragon

810 processor and 3GB RAM. We install ten popular apps on the

device and keep three of them running in the background. We use

one of the most popular benchmarks, Antutu Benchmark, to grade

the device with and without UpDroid running on it. The result is

presented in Figure 7. The y-axis is the score graded byAntutu. The

higher the score is, the faster the CPU runs. In total, UpDroid de-

creases the benchmark score by 15%. The overhead mainly comes

from the high sampling rate of the interrupt numbers and the fre-

quent use of ps command. There is a trade-o� between the accu-

racy and the performance. The evaluation is conducted with a de-

vice released in September 2015. We believe that the overhead can

be decreased on more powerful phones.

Figure 7: Performance of UpDroid evaluated with Antutu

Benchmark
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7.4 Discussion

In this section, we discuss how UpDroid can avoid anti-analysis

techniques and the possibility of using UpDroid as an attack tech-

nique. We also present the limitations of UpDroid.

UpDroid is a dynamic analysis system which is transparent to

malware. The monitoring module of UpDroid is implemented with

the APIs widely used by app developers (e.g., ContentObserver

and VPNService). The anti-analysis techniques are di�cult to evade

UpDroid. Among all theAPIs, VPNService is technically detectable

but cannot be used by malware as an indicator, because VPN is

widely used by mobile users who need secure and private net-

work. It is also quite popular among Chinese users for accessing

blockedwebsites. Instead of detecting APIs commonly used by nor-

mal apps, malware tends to use heuristics which imply the running

environment is under analysis (e.g., invalid IMEI number and ab-

normal GPS info). On the other hand, it would be an advantage

when all malware stops its malicious behavior after detecting Up-

Droid on the users’ devices.

UpDroid is designed for analyzing the underlying app behavior,

but the techniques used can also be applied to maliciously monitor

the users. The monitoring technique that uses /proc/interrupts

can be applied to side-channel attacks, which monitor sensitive

behavior on the device without any permission needed. The app

identi�cation model also starts a study to break the process isola-

tion on Android.

The limitation of UpDroid is that it requires access to /proc

�le system which is protected by critical SELinux policies since

Android 7. From Android 7, the ps command cannot access the

process info of other processes. Hence, we need to identify other

runtime info, e.g., time for launching the other apps, as the feature

of each app in the future. Android 8 prevents third-party apps to ac-

cess /proc/interrupts. Hence, UpDroid may not be signi�cantly

e�ective on devices with Android 8 but still works on a larger pro-

portion of devices with prior Android versions. AppBrain shows

that the market share of Android SDK versions prior to 8.0 is 95.4%

in April 2018 [2].

8 RELATED WORK

Various dynamic tools/platforms have been proposed for analyz-

ing Android apps underlying behavior. DroidScope [37], Copper-

Droid [30], VetDroid [40], DroidBox [22] and other tools analyze

the API calls, system calls, or other features to reconstruct app be-

havior. For example, CopperDroid can reconstruct the apps’ behav-

ior, e.g., sending SMS, by observing and dissecting the system calls.

These tools are based on app instrumentation, framework modi�-

cation or emulator instrumentation, which need input generator

tools to automatically run the target apps. UpDroid can also de-

tect sensitive behavior of Android apps. The di�erence is that Up-

Droid can be applied to devices used by the general public while

these tools have critical requirements for either the running envi-

ronment or the target apps.

Andromaly [28], CrowdDroid [8] and other tools can also run

on non-rooted devices for app analyzing. These tools detect run-

time features, e.g., system call logs and side channel info, of the

running apps and use these features to identify whether the app

is benign or not with machine learning techniques. UpDroid gath-

ers the running features and uses machine learning techniques to

identify the apps that invoke the captured events. Meanwhile, Up-

Droid generates �ne-grained reports of apps, while these tools only

classify the apps. App Guardian [39] also gathers side channel info

and detects malicious behavior, e.g., on non-rooted devices. How-

ever, the detection is based on speci�c heuristics and only targets

runtime information gathering attacks.

BareDroid [25], Ninja [26], Njas [5] and other works provide

dynamic analysis techniques which are resistant to anti-analysis

techniques. BareDroid is an analysis system which uses a phone

cloud for the analysis. It needs to customize the devices in the

phone cloud and thus cannot be applied to devices used by the

public. Ninja needs to customize the �rmware on the Android de-

vices. It is also di�cult to be applied to devices used by the pub-

lic. Njas provides sandboxing for unmodi�ed apps on non-rooted

devices. It dynamically loads the target app’s APK �le to the sand-

boxing app’s context for fully accessing the target app’s resources

and runtime state. Njas relies on an app database and needs to ob-

tain the APK �le of the target app at the same version. Njas cannot

sandbox the apps which do not have a readable APK �les, e.g., the

paid apps. Although these analysis systems are transparent to anti-

analysis techniques, they cannot be applied to devices used by the

general public directly. Compared to these systems, UpDroid can

be easily deployed on the users’ devices without any modi�cation

to the systems or any requirement on the target apps.

As well as current dynamic analysis techniques, other works

also give us inspiration about the runtimemonitoring. Diao et al. [13]

propose to use the interrupt time series produced by the touch-

screen controller to infer the unlock pattern and foreground app.

We dig deeper to interrupt to infer the sensitive behavior. Mop-

Eye [35] leverages the VpnService API to monitor the network

usage of the apps. UpDroid also uses this technique to detect net-

work activities on the devices.

9 CONCLUSION AND FUTUREWORK

In conclusion, we present our e�orts on the dynamic analysis of

app behavior under unmodi�ed and non-rooted devices. We pro-

poseUpDroid - a system for dynamically monitoringAndroid apps’

sensitive behavior. It uses di�erent APIs to monitor Android sys-

tem at runtime and leverages learning to rank technique to iden-

tify the initiator of the detected behavior. We use the permission

coverage, the runtime experiments and the comparison with the

traditional API hooking method to demonstrate the capabilities of

UpDroid. The results show that UpDroid can detect sensitive be-

havior that manipulates the resources of the devices and identify

the apps that trigger the behavior. Currently, the number of partic-

ipants in the initiator study is small. In the future, we will obtain

labeled data from more users to build a more precise identi�cation

model and deploy the system to crowdsourcing for real applica-

tions, e.g., malware detection.
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APPENDIX

Table 5 presents the comparison of normal permission coverage

between API hooking and UpDroid. From this table, API hooking

covers 24/44 normal permissions, while UpDroid covers only 5/44.

Although UpDroid does not cover many normal permissions, it

covers the popular ones, such as BLUETOOTH and NFC.
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Table 5: The comparison of normal permission coverage be-

tween API hooking and UpDroid. In this table, ✗stands for

none of the permissions in this categorize is covered and

✓stands for all are covered.

Permission
API Hooking

UpDroid
Sensitive

API
Content
Provider

Intent

ACCESS_LOCATION_

EXTRA_COMMANDS
✓ ✗ ✗ ✓

ACCESS_NETWORK_STATE ✓ ✗ ✗ ✗

ACCESS_NOTIFICATION_POLICY ✗ ✗ ✗ ✗

ACCESS_WIFI_STATE ✓ ✗ ✗ ✗

BLUETOOTH ✓ ✗ ✓ ✓

BLUETOOTH_ADMIN ✓ ✗ ✓ ✓

BROADCAST_STICKY ✓ ✗ ✗ ✗

CHANGE_NETWORK_STATE ✓ ✗ ✗ ✗

CHANGE_WIFI_

MULTICAST_STATE
✗ ✗ ✗ ✗

CHANGE_WIFI_STATE ✗ ✗ ✗ ✗

DISABLE_KEYGUARD ✓ ✗ ✗ ✗

EXPAND_STATUS_BAR ✗ ✗ ✗ ✗

GET_PACKAGE_SIZE ✓ ✗ ✗ ✗

INSTALL_SHORTCUT ✗ ✗ ✓ ✗

INTERNET ✓ ✓ ✗ ✓

KILL_BACKGROUND_PROCESSES ✓ ✗ ✗ ✗

MANAGE_OWN_CALLS ✗ ✗ ✗ ✗

MODIFY_AUDIO_SETTINGS ✓ ✗ ✗ ✗

NFC ✓ ✗ ✓ ✓

READ_SYNC_SETTINGS ✓ ✓ ✗ ✗

READ_SYNC_STATS ✓ ✗ ✗ ✗

RECEIVE_BOOT_COMPLETED ✓ ✗ ✓ ✗

REORDER_TASKS ✓ ✗ ✗ ✗

REQUEST_COMPANION_

RUN_IN_BACKGROUND
✗ ✗ ✗ ✗

REQUEST_COMPANION_USE_

DATA_IN_BACKGROUND
✗ ✗ ✗ ✗

REQUEST_DELETE_PACKAGES ✗ ✗ ✗ ✗

SET_ALARM ✗ ✗ ✓ ✗

SET_WALLPAPER ✓ ✗ ✗ ✗

SET_WALLPAPER_HINTS ✓ ✗ ✗ ✗

SIGNAL_PERSISTENT_

PROCESSES
✗ ✗ ✗ ✗

TRANSMIT_IR ✓ ✗ ✗ ✗

USE_FINGERPRINT ✓ ✗ ✗ ✗

VIBRATE ✓ ✗ ✗ ✗

WAKE_LOCK ✓ ✗ ✗ ✗

WRITE_SYNC_SETTINGS ✓ ✗ ✗ ✗

Total ✓ 26/35 5/26
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