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Abstract—Open TCP/UDP ports are traditionally used by
servers to provide application services, but they are also found in
many Android apps. In this paper, we present the first open-
port analysis pipeline, covering the discovery, diagnosis, and
security assessment, to systematically understand open ports in
Android apps and their threats. We design and deploy a novel on-
device crowdsourcing app and its server-side analytic engine to
continuously monitor open ports in the wild. Over a period of ten
months, we have collected over 40 million port monitoring records
from 3,293 users in 136 countries worldwide, which allow us to
observe the actual execution of open ports in 925 popular apps
and 725 built-in system apps. The crowdsourcing also provides
us a more accurate view of the pervasiveness of open ports in
Android apps at 15.3%, much higher than the previous estimation
of 6.8%. We also develop a new static diagnostic tool to reveal that
61.8% of the open-port apps are solely due to embedded SDKs,
and 20.7% suffer from insecure API usages. Finally, we perform
three security assessments of open ports: (i) vulnerability analysis
revealing five vulnerability patterns in open ports of popular apps,
e.g., Instagram, Samsung Gear, Skype, and the widely-embedded
Facebook SDK, (ii) inter-device connectivity measurement in 224
cellular networks and 2,181 WiFi networks through crowdsourced
network scans, and (iii) experimental demonstration of effective
denial-of-service attacks against mobile open ports.

I. INTRODUCTION

A network port is an abstraction of a communication point.
Servers on the Internet offer their services by “opening” a
port for clients to send requests to, e.g., web servers on
TCP port 80. A TCP/UDP port is regarded as open if a
server process listens for incoming packets destined to the
port and potentially responds to them. Since mobile devices
are generally not suitable for providing network services due
to their non-routable addresses and lack of CPU and bandwidth
resources, one may argue that mobile apps are not suitable for
hosting open ports. However, a few recent studies have shown
otherwise and these open ports are susceptible to various
attacks. Lin et al. [57] demonstrated the insecurity of local TCP
open ports used in non-rooted Android screenshot apps. Wu
et al. [79] found that the top ten file-sharing apps on Android
and iOS typically do not authenticate traffic to their ports. Bai
et al. [83] further revealed the insecurity of Apple ZeroConf
techniques that are powered by ports such as 5353 for mDNS.

Beyond these manual studies on specific apps, Jia et al. [52]
recently developed a static tool OPAnalyzer to identify TCP
open ports and detect vulnerable ones in Android apps. They
identified potential open ports in 6.8% of the top 24,000
Android apps, among which around 400 apps were likely
vulnerable and 57 were manually confirmed. Nevertheless,
OPAnalyzer still suffers from the inherent limitation of static
analysis (i.e., the code detected might not execute) and the
incapability of typical Android static analysis to handle dy-
namic code loading [65], [67], complex implicit flows [43],
[66], and advanced code obfuscation [46], [78]. Moreover, the
focus of OPAnalyzer is about detecting permission-misuse-
related vulnerabilities in TCP open ports (via pre-selected sink
APIs), while the entire picture of open ports in the Android
ecosystem is still largely unexplored.

In this paper, we aim to systematically understand open
ports in Android apps and their threats by proposing the first
analysis pipeline that covers the open port discovery, diagnosis,
and security assessment. The key of this pipeline is to employ
crowdsourcing, instead of static analysis, for the open port
discovery, and use static analysis only for the diagnosis of
discovered open ports. As shown in Fig. 1, our pipeline first
adopts a novel crowdsourcing approach to continuously mon-
itor open ports in the wild, and then employs static analysis
to collect and diagnose the code-level information of discov-
ered open ports. It also performs three security assessments:
vulnerability analysis, inter-device connectivity measurement,
and denial-of-service attack evaluation. We further elaborate
our contributions as follows.

First, we design and deploy the first crowdsourcing plat-
form (an on-device monitoring app and a server-side analytic
engine) to continuously monitor open-port apps without user
intervention, and show that such a crowdsourcing approach is
more effective than static analysis in open port discovery. Our
Android app, NetMon1, has been available on Google Play for
an IRB-approved crowdsourcing study since October 2016. It
is still an on-going deployment cumulatively with 6K+ installs.
In this paper, we base our analysis on the data over ten months
(a period when most of our evaluations were performed and
security findings were confirmed), which already generates a
large number of port monitoring records (over 40 million) from
a wide spectrum of users (3,293 phones from 136 countries).
It enables us to observe the actual open ports in execution
on 2,778 Android apps, including 925 popular ones from
Google Play and 725 built-in apps pre-installed by over 20

1NetMon is short for “Network Scanner & Port Monitor” and is available
at https://play.google.com/store/apps/details?id=com.netmon.
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Fig. 1: The workflow of our open-port analysis pipeline (methodology shown in colored blocks and results shown in rounded blocks).

phone manufacturers. Besides the built-in apps missed by
OPAnalyzer, NetMon also covers both TCP and UDP ports.

We further quantify the efficacy of crowdsourcing through a
comparison with static analysis. Out of the 1,027 apps that are
confirmed with TCP open ports by our crowdsourcing, 25.1%
of them use dynamic or obfuscated codes for open ports, and
only 58.9% can be detected by typical Android static analysis
techniques. With the help of NetMon, we manage to quantify
the pervasiveness of open ports in a controlled set of the top
3,216 apps from Google Play, and find TCP open ports in
492 of them. This level of pervasiveness (15.3%) is more than
twice previously reported (6.8%) using static analysis [52].
Moreover, we are the first to measure the distribution of open-
port apps across all 33 Google Play categories.

While crowdsourcing is effective in port discovery, it does
not reveal the code-level information for more in-depth under-
standing and diagnosis. As the second contribution, we include
a diagnosis phase through OPTool, a new static analysis tool
enhanced with open-port context and semantics, to understand
the code-level open port constructions and the corresponding
security implications. We focus on two kinds of diagnoses:
whether an open port is introduced by developers themselves
or embedded via a third-party SDK (Software Development
Kit) by default, and whether developers apply secure open-port
coding practice. The detection results are quite alarming. First,
13 popular SDKs are identified with open ports and 61.8% of
open-port apps are solely due to these SDKs, among which
Facebook SDK is the major contributor. Second, 20.7% of
the open-port apps make convenient but insecure API calls,
unnecessarily increasing their attack surfaces.

In the last phase of our pipeline, we perform three novel
security assessments of open ports:

Vulnerability analysis. Unlike OPAnalyzer which concentrates
on the pre-defined vulnerability pattern, our vulnerability
analysis aims to identify popular apps’ vulnerabilities that
may not contain a fixed pattern — therefore more difficult
to detect. The five vulnerability patterns identified by us
present themselves in apps, such as Instagram, Samsung
Gear, Skype, and the widely-embedded Facebook SDK.

Denial-of-service attack evaluation. We experimentally eval-
uate the effectiveness of a generic denial-of-service
(DoS) attack against mobile open ports. We show that
DoS attacks can significantly and effectively downgrade
YouTube’s video streaming, WeChat’s voice call, and
AirDroid’s file transmission via their open ports.

Inter-device connectivity measurement. Remote open-port at-
tacks require the victim device to be connected (intra-
or inter-network). To measure the extent to which this
requirement is satisfied, we extend NetMon to conduct
inter-device connectivity tests. With 6,391 network scan
traces collected from devices in 224 cellular networks and
2,181 WiFi networks worldwide, we find that 49.6% of
the cellular networks and 83.6% of the WiFi networks
allow devices to directly connect to each other in the same
network. Furthermore, 23 cellular networks and 10 WiFi
networks assign public IP addresses to their users, which
allows inter-network connectivity from the Internet.

II. BACKGROUND AND THREAT MODEL

Before presenting our analysis pipeline, we first introduce
the necessary background and our threat model.

An open port, in this paper, is defined as a TCP/UDP port
that binds to any legitimate IP address and is configured to
accept packets. Legitimate IP address includes public, private,
any (0.0.0.0), and also the local loopback IP address. We
use such a generalized definition primarily due to the threat
model in smartphones — any third-party apps running on the
phone could be untrusted and could utilize even the local
loopback address for attacks. To make it simple, we use host
IP address to refer to all IP addresses except the loopback
IP address, which will be explicitly stated. Under such a
convention, a local open port refers to one that binds to the
loopback address.

Open ports on Android are typically created using TCP
stream or UDP datagram sockets. BluetoothSocket [10]
(in Android SDK), NFCSocket [26] (an open-source li-
brary), and in particular, the previously studied UNIX domain
socket [71] are out of our scope because they do not use
network ports. For example, Unix domain sockets use file
system as their address name space, and therefore there are
no IP addresses and port numbers. The communication also
occurs entirely within the operating system between processes.

We consider three types of adversaries in our threat model:

• A local adversary is an attack app installed on the device
on which the victim app (with open ports) runs. Such a
adversary does not require sensitive permissions but needs
the INTERNET permission to access the open ports.

• A remote adversary resides in the same WiFi or cellular
network to which the victim device connects. Such an
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adversary can send TCP/UDP packets to other nodes if the
network provides intra-network connectivity or even inter-
network connectivity (with public IP addresses assigned
to clients), surprisingly true for numerous networks as we
will show in Sec. V-C.

• A web adversary remotely exploits a victim’s open ports
by enticing the victim to browse a JavaScript-enabled
web page under the adversary’s control. This threat is
only applicable to HTTP-based ports with a fixed port
number, because (i) JavaScript and WebSocket can issue
only HTTP packets, and (ii) the resource constraint makes
it infeasible for a web page to iterate the ephemeral port
range [16] according to our test.

Note that local open ports could be attacked only by the
first and the third adversaries, while other open ports may
suffer from all three adversaries.

III. DISCOVERY VIA CROWDSOURCING

The first phase of our pipeline is to discover open ports.
Instead of using static analysis as in [52], we propose the first
crowdsourcing approach for the discovery of open ports. It has
the following unique advantages: (i) it can monitor open ports
in the wild, covering not only third-party apps but also built-
in apps that are usually difficult to analyze due to the heavy
Android fragmentation [5]; (ii) it results in no false positive;
(iii) it captures the exact port number and IP address used
as well as their timestamps; and (iv) it covers both TCP and
UDP ports. Furthermore, as to be evaluated in Sec. III-C3,
our crowdsourcing is much more effective in terms of port
discovery than typical Android static analysis, which cannot
handle dynamic code loading [65], [67], complex implicit
flows [43], [66], and advanced code obfuscation [46], [78].

Our crowdsourcing platform consists of an on-device port
monitoring app NetMon (Sec. III-A) and a server-side open-
port analytic engine (Sec. III-B). We have deployed NetMon
to Google Play and collected the crowdsourcing results from a
large number of real users (Sec. III-C). Before moving to the
technical details, it is worth highlighting the overall challenges
in our crowdsourcing approach. The development of NetMon
requires us to handle many product-level issues for a long-term
and user-friendly deployment, let alone we are the first to ex-
plore on-device crowdsourcing for monitoring other open-port
apps in real user devices. Moreover, compared to the typical
app-based crowdsourcing (e.g., Netalyzer [75], MopEye [80],
and Haystack [69]), our open-port crowdsourcing is unique
in that the collected raw records cannot be directly analyzed
due to the existence of random port numbers. We thus need
to design an “intelligent” analytic engine that can effectively
cluster raw records into per-app open port results.

A. On-device Open Port Monitoring

Different from ZMap [53] and Nmap [27] that probe ports
by externally sending network traffic, we launch on-device
port monitoring directly on crowdsourced devices to collect
not only open port numbers but also their app information.
Fig. 2 shows two NetMon user interfaces for port monitoring.
Fig. 2(a) shows a partial list of apps running with open ports,
while Fig. 2(b) shows the detailed records for a specific app
(YouTube), including the TCP/UDP port numbers, IP addresses
to which the ports bind, and the timestamps.

(a) A sample of open-port apps. (b) Detailed records for YouTube.

Fig. 2: User interfaces in NetMon showing open ports.

Port monitoring mechanism. NetMon leverages a pub-
lic interface in the proc file system [29] to moni-
tor open ports created by all apps on the device. The
four pseudo files under the /proc/net/ directory (i.e.,
/proc/net/tcp|tcp6|udp|udp6) serve as a real-time
interface to the TCP and UDP socket tables in the kernel
space. Each pseudo file contains a list of current socket entries,
including both client and server sockets. Any Android app can
access these pseudo files without explicit permissions, and this
works on all Android versions including the latest Android 9.
By using such an interface, NetMon can obtain the following
port-related information:

• Socket address. It covers a port number and an IP address.
• TCP socket state. There are 12 possible TCP states [34],

such as LISTEN and ESTABLISHED.
• The app UID. Using the PackageManager APIs, Net-

Mon obtains the app’s name from its UID (user ID).

According to the definition in Sec. II, NetMon considers
server ports as open ports. Therefore, it identifies a TCP open
port from the proc file when it is in the LISTEN state. On
the other hand, since UDP has no state information, we rely on
the server-side analytic engine to further identify UDP open
ports. Hence, the collected UDP port records are only the initial
results and not all of them will be treated as open ports (e.g.,
the client UDP port used by YouTube in Fig. 2(b)).

Challenges. The goal of long-term port monitoring on real
user devices requires NetMon to periodically analyze those
four proc files with minimal overhead. A simple idea of
creating a “long-lived” service to periodically monitor open
ports would not work as the service will be stopped by
Android after a certain amount of time (e.g., after the device
goes to sleep) or simply terminated by users. To overcome
this, we leverage Android AlarmManager [2] to schedule
periodic alarms to perform the proc file analysis robustly. We
chose five minutes as the alarm interval because it provides a
good sampling rate (excluding many client UDP ports) while
incurring negligible overhead. Our experience shows that the
potential information loss within the five-minute interval is
well compensated by the large number of users contributing
data in our crowdsourcing campaign. Moreover, we take ad-
vantage of the batched alarm mechanism [3] introduced since
Android 4.4 and a characteristic in /proc/net/tcp6|tcp
— the server socket entries always appear in the top rows —
to further minimize the overhead. As a result, NetMon incurs
less than 1% overhead on CPU and battery for a daily usage.
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Fig. 3: An overview of our server-side open-port analytic engine to perform the three-step clustering (using Netflix as an example).

B. Server-side Open-Port Analytic Engine

The open port information gathered from individual
phones, e.g., the Netflix app opens TCP port 9080 at time t1
and opens UDP port 39798 at time t2, constitute individual
observations that need to be clustered to generate per-app
open port results, e.g., Netflix has a fixed TCP port 9080
and a random UDP port. More specifically, different port
records associated with the same “random” open port should
be unified, and open ports with “fixed” port numbers should
be recognized. This may sound straightforward, but it turns
out to be a challenging task because fixed and random ports
could exhibit indistinguishable observations. To overcome this
challenge, we introduce a server-side analytic engine, as shown
in Fig. 3, to perform a three-step clustering:

Step 1: Aggregation. We first aggregate each app’s obser-
vations by different types of ports and IP addresses. This is
a “narrow down” step to effectively reduce the complexity of
clustering — open ports with different types or IP addresses
shall be in different clusters, since they are created by different
APIs or InetAddress parameters at the code level. Specif-
ically, we divide the observations into 12 groups, enumerating
the combination of four types of ports (TCP/UDP ports in IPv4
or IPv6) and three types of IP addresses (loopback address
127.0.0.1, ANY address 0.0.0.0, and the specific host
address such as 192.168.X.X). In the Netflix example
shown in Fig. 3, we have two groups — TCP4 and UDP4
(both with IP 0.0.0.0).

Step 2: Clustering by occurrences. A fixed port on an app
presents itself as identical records on multiple user devices,
while a random port presents its observations with different
port numbers. Based on this observation, we can differentiate
between fixed and random ports by analyzing the occurrences
of a record within each group (constructed in Step 1). We
define this occurrence as the fraction of user devices presenting
a specific port number within the group. For example, the
UDP port 39798 for IPv4 address in our Netflix set has an
occurrence of 3.6%.

With this definition of the occurrence, we perform port
clustering where fixed ports are those with a high occurrence
and random ports are those with low ones. As shown in
Fig. 3, Netflix’s UDP port 39798 in our dataset is certainly
a random port because its occurrence is only 3.6% among
the 84 Netflix users in the UDP4 group, whereas TCP port
9080 is a fixed port because its occurrence has reached 100%
in the TCP4 group. In practice, we use 50% as the upper

bound for the low-occurrence scenario, which is based on the
assumption that fixed ports should cover at least more than half
of the users in the group. We consider those with occurrences
higher than 80% as fixed ports. However, the threshold-based
occurrence strategy tends to be unreliable when group sizes are
small because a random port exhibiting a number of different
observations may have one or several of them show up with
high occurrences. In these cases (and others with occurrences
between 50% and 80%), we apply a heuristics approach, to be
described next, to get a more accurate inference.

Step 3: Clustering by heuristics. For observations that
cannot be reliably determined by occurrences, we further
leverage three heuristics to handle them. We first separate port
numbers into the “random” range (for port numbers between
32,768 and 61,000, i.e., those randomly assigned by the OS or
the so-called ephemeral ports [16]) and the “fixed” range (for
other port numbers). For each group, we count the numbers of
unique port numbers within these two ranges, and denote them
by Nr and Nf , respectively. We then have the following three
port distribution patterns and their corresponding heuristics:

• All ports are in the random range (Nr > 0 and Nf = 0).
We simply mark them as one random port based on the
conservative principle that we can tolerate misclassifying
a fixed port to be a random one but not the opposite.

• Ports are in both ranges (Nr > 0 and Nf > 0). We first
consider all ports in the random range as presenting one
random port. If Nr is significantly bigger than Nf (e.g.,
ten times) and Nf is relatively small (e.g., less than 3),
we mark ports in the fixed range as fixed ports.

• All ports are in the fixed range (Nr = 0 and Nf > 0). We
conservatively output just one random port if Nf is not
small (e.g., larger than 3); otherwise, we consider them
as fixed ports.

C. Crowdsourcing Results

We have deployed NetMon to Google Play for an IRB-
approved2 crowdsourcing study since 18 October 2016. In this
paper, we base our analysis on the data collected till the end of
July 2017 (a period of around ten months when most of our
evaluations were performed and security findings were con-
firmed), which involves 3,293 user phones from 136 different

2IRB approval was obtained from Singapore Management University on
14 October 2016. Under this study, we do not collect personally identifiable
information (PII) or IMEI. We use only the anonymized ANDROID ID
(hashed with a salt) for device identification. Users are also explicitly informed
about all the information we collect through a pop-up confirmation dialog.
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countries worldwide. Users of NetMon are attracted solely via
Google Play without advertisements or other incentives. About
a quarter of the devices (26%) are from the US, while the
percentage for other countries is very diverse, which makes
our dataset more representative.

In our dataset, we collect 40,129,929 port monitoring
records and discover 2,778 open-port apps (2,284 apps with
TCP open ports and 1,092 apps with UDP ones) and a total
of 4,954 open ports (3,327 TCP ports and 1,627 UDP ports).
Note that with the help of our analytic engine, we can classify
UDP random ports bound to the host IP address as client
UDP ports. Fig. 4 shows the distribution of open-port apps
with different types of socket addresses. We find that both
TCP and UDP open ports have their fair share in these apps,
and many of these ports expose them to potential network
attacks (e.g., bound to non-local IP addresses). In addition, we
find that 1,390 apps use long-lasting (more than 5 minutes)
client UDP ports to communicate with servers. To the best
of our knowledge, this work constitutes the first report of
crowdsourcing Android apps with open ports and their IP
address and port number information.

1) Open Ports in Popular Apps: With the help of Sele-
nium [31], a web browser automation tool, we obtain the
number of installs of the 1,769 open-port apps on Google Play,
and find that 925 apps (52.3%) have over one million installs.
Among them, 100 apps even have over 100M installs each.
We thus take a closer look at these 100 highly popular apps
and present 28 representatives of them in Table I. We can
see that popular apps such as Facebook, Instagram, Skype,
WeChat, YouTube, Spotify, Netflix, and Plants vs. Zombies
are surprisingly not free of open ports.

An interesting observation is that 89 out of the 925 popular
apps (9.6%), including Firefox and Google Play Music as listed
in Table I, use UDP port 1900 and/or 5353 for the UPnP
and mDNS services, respectively. Furthermore, the open-port
timeline analysis shows that both ports cumulatively last for
over a month for each of their top ten apps, which provides
enough time window for adversaries to launch attacks. In
particular, Bai et al. [83] has demonstrated that such ports
in iOS and OSX apps could suffer from Man-in-the-Middle
attacks.

TABLE I: Representative apps that have open ports.
Category App Name Type IP† Port # of Installs

Social

Facebook TCP L Random 1B - 5B
Instagram TCP L Random 1B - 5B

Google+ TCP H Random 1B - 5BTCP L Random

VK TCP H 48329 100M - 500MTCP L Random

Communication

Messenger TCP L Random 1B - 5B
WeChat TCP H 9014 100M - 500M

Skype TCP H Random 500M - 1BTCP L Random
Chrome TCP L 5555 1B - 5B

Firefox
TCP H 8080

100M - 500MTCP L Random
UDP H 1900

YouTube TCP H Random 1B - 5BTCP L Random
Video Players GPlay Music TCP L Random 1B - 5Bor UDP H 1900

Music & Audio Spotify TCP H Random 100M - 500M

Amazon Music TCP L Random 100M - 500MTCP H Random

Tools

Google Play UDP H 2346 5B - 10BServices UDP H 5353
Google TCP H 20817 1B - 5B

Clean Master TCP L Random 500M - 1B
360 Security TCP L Random 100M - 500M

Avast TCP H 20817 100M - 500MTCP L Random

Productivity

Google Drive TCP L Random 1B - 5B
Cloud Print UDP H 5353 500M - 1B

TCP H 42135

100M - 500MES File TCP H 59777
Explorer TCP L Random

UDP H 5353

Entertainment

GPlay Games TCP L Random 1B - 5B

Netflix
TCP H 9080

100M - 500MUDP H 1900
UDP L Random

Peer Smart TCP L Random 100M - 500MRemote UDP H 5353

Games

Plants vs. UDP H 24024 100M - 500MZombies 2
Asphalt 8 TCP H 7940 100M - 500M
Solitaire TCP L Random 100M - 500M

Sonic Dash TCP L Random 100M - 500M
† “L” is for the local IP address and “H” is for the host IP, as termed in Sec. II.

Compared to UDP, TCP open ports have more diverse
usages. The top five open TCP port numbers, port 8080, 30102,
1082, 8888, and 29009, have no well-defined fixed usage
(unlike the UDP port 1900 and 5353 above) and appear in
only 14 to 64 apps. Despite this diversity, it is interesting to see
some uncommon TCP port numbers (e.g., 30102 and 29009)
appearing in multiple apps. To gain a better understanding of
these open ports, we perform static analysis and find that many
of them are introduced by SDKs (see Sec. IV-D for more
details). As the most interesting example, Facebook SDK is
the major contributor to 997 apps (of the entire dataset) for
their random TCP ports bound to the local IP address (i.e., the
fourth sector in Fig. 4). Such local random TCP ports appear
in 62.8% of the 925 popular apps, and the percentage goes up
to 78% in the 100 highly popular apps. As shown in Table I,
even anti-virus apps, 360 Security, and Avast, are also affected.

2) Open Ports in Built-in Apps: Besides the popular apps
on Google Play, we also identify 755 built-in apps (apps
pre-installed by phone manufacturers) containing open ports
(excluding those that also appear as standalone apps on Google
Play, such as Facebook and Skype). We recognize them by
collecting user devices’ system app package names (via the
SYSTEM flags of the ApplicationInfo class).
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TABLE II: Top smartphone vendors that include open-port apps.
Vendor # Apps Top Five Open Port Numbers

Samsung 186 UDP: 5060 68 1900 6100 6000
TCP: 5060 6100 6000 7080 8230

LG 75 UDP: 68 1900 19529 5060 39003
TCP: 5060 59150 59152 8382 39003

Sony 69 UDP: 68 1024 1900 1901 -
TCP: 5000 5900 5001 9000 30020

Qualcomm 42 UDP: 68 5060 1900 32012 -
TCP: 5060 6100 4000 4500 4600

MediaTek 26 UDP: 68 5060 50001 50002 50003
TCP: 5060 50001 - - -

Lenovo 25 UDP: 68 5060 50000 50001 52999
TCP: 2999 5060 50001 55283 39003

Motorola 21 UDP: 68 32012 16800 - -
TCP: 2631 20817 - - -

Huawei 13 UDP: 68 1900 8108 - -
TCP: - - - - -

ASUS 13 UDP: 68 5353 11572 11574 -
TCP: 2222 5577 8258 8282 8990

Xiaomi 11 UDP: 68 1900 5353 - -
TCP: 6000 8081 8682 - -

With vendor-specific package keywords, we identify over
20 vendors that include open ports in their built-in apps.
Table II lists the top ten according to the number of built-in
apps with open ports. We can see that Samsung, LG, and Sony
are the top three vendors, with 186, 75, and 69 open-port apps,
respectively. Considering the huge numbers of phones sold by
these vendors, their built-in open ports are expected to exist
in a significant portion of the entire smartphone market. By
analyzing each vendor’s top five open ports, we identify three
major reasons for including these open ports in these built-in
apps.

First, more than half (489 apps, 64.8%) of these apps3

contain UDP open port 68, which is for receiving DHCP
broadcasts and updating the host IP address. As shown in
Table II, UDP port 68 appears in all top ten device vendors,
and it often affects the largest number of built-in apps in each
vendor. Furthermore, we find that opening UDP port 68 is
often long-lasting, with the median value of cumulative port-
opening time being 32.3 hours per app. This port can leak the
host name of the phone, which was fixed only in the latest
Android 8 [11].

Second, about one quarter (175 apps, 23.2%) have
TCP/UDP port 5060 open, which is for VoIP SIP
connection setup [35]. These built-in apps are from
five device vendors: Samsung, LG, Lenovo, Qualcomm,
and MediaTek. By inspecting these apps, we find that
quite a number of them do not seem to require the
SIP capability, e.g., com.lenovo.powersetting,
com.sec.knox.bridge, com.sec.automation, and
com.qualcomm.location, to name a few.

Moreover, we surprisingly find that 41 Samsung
models and 16 LG models modify some Android
AOSP apps (e.g., com.android.settings and
com.android.keychain) to introduce the open
port 5060. Other cases where Android AOSP apps are
customized to introduce open ports include TCP port
6000 in Xiaomi’s com.android.browser app, and
UDP port 19529 opened by LG’s 18 system apps. Most
of these apps, e.g., com.lge.shutdownmonitor and
com.lge.keepscreenon, generally have no networking

3Note that 175 of them also contain other ports.

functionality. This suggests that their open ports could be
unnecessary. We leave an in-depth analysis of these cases to
our future work.

Third, the rest of the open ports are mainly for network
discovery and data sharing. Besides common port numbers
such as 1900 (UPnP) and 5353 (mDNS), vendors use custom
ports to implement their own discovery and data sharing
services. Examples include TCP ports 7080 and 8230 for
Samsung’s Accessory Service [30], TCP port 59150 and 59152
for LG’s Smart Share [22], and TCP port 5000 and UDP port
1024 for Sony’s DLNA technique [33]. We reverse engineer
Samsung Accessory and identify a security bug; see Sec. V-A.

3) Pervasiveness and Effectiveness: The crowdsourcing
results presented above have demonstrated the pervasiveness
of open ports in Android apps and the efficacy of using crowd-
sourcing to discover open ports. For example, the number of
apps found with TCP open ports (2,284 apps) is significantly
more than that found in the state-of-the-art research [52] (1,632
apps), which is based on a large set of 24,000 apps. To further
quantify those two metrics, we correlate the crowdsourcing
results with two sets of apps used in static analysis.

To quantify the open-port pervasiveness, we crawled a
set of top 9,900 free apps from Google Play in February
2017 (fitting the period of our crowdsourcing). These apps
are comprised of the top 300 free apps from 33 Google Play
categories, with all gaming apps consolidated into a single
category. By looking into the overlapping of this set and the
apps monitored by NetMon, we count a total of 3,216 apps
(with vendor built-in apps excluded). Out of these 3,216 apps,
our results show that 492 of them present TCP open ports, i.e.,
15.3% of pervasiveness, which is significantly higher than a
previous report (6.8%) based on static analysis [52].

To quantify the effectiveness of our crowdsourcing ap-
proach, we first prepare a baseline set of apps. Out of the
2,284 TCP open-port apps (some are built-in apps) discovered
by crowdsourcing, we are able to obtain 1,027 apps from
the public AndroZoo app repository [39]. According to the
experimental results in Sec. IV-C, only 58.9% of these apps
can be detected by typical Android static analysis. In particular,
25.1% of them use dynamic code loading [65] or advanced
code obfuscation [78]. They are therefore not possibly detected
by a pure static analysis [46], [67]. This indicates that crowd-
sourcing is much more effective than Android static analysis
in the context of open port discovery.

IV. DIAGNOSIS VIA STATIC ANALYSIS

While crowdsourcing is effective in discovering open ports,
it does not reveal the code-level information for more in-
depth understanding and diagnosis. To understand how open
ports are actually constructed at the code level and its security
implication, our pipeline (Fig. 1) includes a diagnosis phase
through OPTool, a static analysis tool we develop specifically
for the open-port diagnosis. Note that the goal of our diagnosis
is not to rediscover (and analyze) all open ports identified
by our crowdsourcing as we have shown that crowdsourcing
is more effective for port discovery. Instead, we aim to
understand the major open-port usages by enhancing typical
Android static analysis with open-port context and semantics.
As a result, we limit our static analysis to TCP open ports
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as similar to OPAnalyzer [52], since UDP open ports have
much more fixed usages (mainly for providing system-level
networking services) as we have seen in Sec. III-C. In addition,
overcoming the common difficulties in existing Android static
analysis (e.g., dealing with dynamic or reflected codes) is also
not our focus.

In this section, we first cover the background of code-level
open port construction and the objectives of our analysis (Sec.
IV-A), and then present the details of our static analysis tool
OPTool (Sec. IV-B). Finally, we present the experiments we
have performed (Sec. IV-C) and the diagnosis results (Sec.
IV-D and Sec. IV-E).

A. Open Port Construction and Our Analysis Objectives

At the code level, an open port on Android could be
constructed in either Java or C/C++ native code. The na-
tive construction is similar to the traditional server-side pro-
gramming by calling socket(), bind(), listen(), and
accept() system calls sequentially, while the Java construc-
tion is to simply initialize a ServerSocket object and call
the accept() API. The first objective of our static analysis is
to trace each construction to (i) differentiate if the construction
constitutes a “live port” or a “dead port,” and (ii) determine if
a third-party SDK is on the call hierarchy. Such understanding
is important because we want to filter out false positives of
open-port constructions, and Android apps usually include
various SDKs [41], especially the advertisement or analytics
SDKs [50], [73], which could introduce open ports without
developers’ awareness. This analysis is challenging because
many networking libraries included in the app may contain
open-port code that is never invoked by the host app. We
therefore need a backward slicing analysis that can accurately
trace back to every node on the call hierarchy. Such analysis
has to be sensitive to the calling contexts, class hierarchy,
implicit flows, and so on.

After digging deeper into the Java constructions, we find
a total of 11 open-port constructor APIs shown in Listing 1.
These ServerSocket APIs were originally from Java SDK,
and have been directly ported over to Android. A convenient
way of invoking these APIs is to pass only the port number
parameter, and the APIs will automatically assign the addr
and backlog parameters. The default setting of addr, inter-
estingly, is the ANY IP address instead of the local loopback
IP address. Moreover, if addr is set to null, the ANY IP
address is also used by default. This legacy design in the
original Java SDK might be appropriate for open ports on
PCs but not for mobile — as we saw earlier in Table I, many
Android open ports are designed for local usages. We consider
this kind of “convenient” usage potentially insecure in the
sense that they could inadvertently increase the attack surface.

In view of such potentially insecure use of the APIs,
we come up our second objective of identifying the precise
parameter values of all open-port constructions, so that we
can evaluate the extent to which Android developers adopt
such convenient but potentially insecure Java APIs. Note that
these parameters might evolve across different objects, fields,
arrays, and involve arithmetic operators and Android APIs. We
need to understand all these semantics and calculate a complete
representation of the parameters (instead of just capturing

// API #1-#3
ServerSocket(int port);
ServerSocket(int port, int backlog);
ServerSocket(int port, int backlog, InetAddress addr);

// API #4-#6
SSLServerSocket(int port);
SSLServerSocket(int port, int backlog);
SSLServerSocket(int port, int backlog, InetAddress addr);

// API #7-#9
//class ServerSocketFactory:
createServerSocket(int port);
createServerSocket(int port, int backlog);
createServerSocket(int port, int backlog,InetAddress addr);

// API #10-#11
//ServerSocket socket = new ServerSocket();
socket.bind(SocketAddress addr);
socket.bind(SocketAddress addr, int backlog);

Listing 1: All ServerSocket constructor APIs.

isolated constants in SAAF [51]). Last but not the least, it
is important for our analysis to be efficient and scalable with
a large number of Android apps.

B. OPTool’s Design and Implementation

We design and implement a new static analysis tool called
OPTool to specifically handle these challenges. Instead of
generating traditional slicing paths, OPTool uses a structure
called backward slicing graph (BSG) to simultaneously track
multiple parameters (e.g., port and addr) and capture a com-
plete representation of the parameters. On the generated BSGs,
OPTool performs graph traversal and conducts semantic-aware
constant propagation. We also include a preprocessing step
in OPTool to quickly search for open-port constructions to
improve its scalability.

Locating open-port constructions. This can be done
by searching for the accept() API of ServerSocket
and ServerSocketChannel classes, which are the only
Android APIs to open TCP ports in Java. To enable fast
searching and to handle the multidex issue (where Android
apps split their bytecodes into multiple DEX files to overcome
the limit of having a maximum of 65,536 methods [12]), we
use dexdump [15] to dump (multiple) app bytecodes into
a (combined) plaintext file and then perform the searching.
Additionally, for the native code, OPTool searches each .so
file for the four socket system calls.

Backward parameter slicing via BSG. After locating the
open-port constructions, we apply backward slicing on their
parameters to generate BSGs. Each BSG corresponds to one
target open-port call site and records the slicing information
of all its parameters and paths. The BSG not only enables
OPTool to track multiple parameters in just one backward run,
but also makes our analysis flow- and context-sensitive, e.g.,
the process of constructing BSG naturally records the calling
context when analyzing the target of a function call so that
it can always jump back to the original call site. OPTool is
also sensitive to arrays and fields. With the help of forward
constant propagation shown below, our backtracking just needs
to taint both the instance field (or the array index) and its class
object. Handling static fields does not need the extra help,
but requires us to add their statically uninvoked <clinit>
methods (where static fields get initialized) into the BSG.
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A notable challenge for Android backward slicing is to deal
with implicit flows and callbacks. OPTool builds in support
of class hierarchy, interface methods, asynchronous execution
(e.g., in Thread, AsyncTask, and Handler), and major
callbacks in the EdgeMiner list [44]. Furthermore, we support
backtracking across (explicit) inter-component communication
(ICC) [62], and model Android component lifecycle [40].

Semantic-aware constant propagation. After performing
the inter-procedural backward slicing, we calculate the com-
plete parameter representation in a forward manner. Besides
the instruction semantics as in the typical forward propaga-
tion [48], we handle the following semantics:

Maintaining object semantics. To determine the correct
object for each instance field, we perform points-to analy-
sis [54] for all new statements in the BSG. Specifically, we
define an InstanceObj structure and initialize a unique
InstanceObj object for each new statement. We then
propagate the InstanceObj objects along the path and
update their member fields if necessary. As a result, whenever
a target instance field is to be resolved, we can retrieve its
corresponding InstanceObj and extract its value. Array and
ICC objects can be treated similarly with our modeling of the
Intent APIs for updating/retrieving the ICC object fields.

Modeling arithmetic and API semantics. We model not
only the five major arithmetic operators, +, -, *, /, and
% (by extracting the two operands and generating a cor-
responding statement in Java code), but also mathemati-
cal APIs, e.g., Math.abs(int) and Math.random()
(via a special constant “RANDOM”). We also model all
other encountered Android framework APIs, which in-
clude IP address APIs, Integer and String APIs, and
SharedPreferences APIs. There are also a few APIs that
are statically unresolvable, e.g., retrieving values from user
interface via EditText.getText() and from database via
Cursor.getInt(int). We save these cases to the final
results without resolving their parameters.

Removing dead ports and resolving SDK names. An
important feature in OPTool is the removal of “dead ports” that
are never executed. We analyze the port liveness in three steps
of OPTool. First, during the backward slicing, we perform
reachability analysis to exclude slices that cannot trace back to
the app entry functions. Second, in the forward propagation,
we consider ports with unresolvable parameters as dead ports.
Third, the post-processing step excludes dead ports with illegal
parameters, e.g., we have detected tens of cases with port
parameter -1.

Resolving names of the SDKs is non-trivial
due to code obfuscation. That said, we have had
successes with (i) extracting the name of each “sink”
class that directly calls ServerSocket constructor
APIs — typically the non-obfuscated portions, e.g.,
com.facebook.ads.internal.e.b.f for the
Facebook Advertisement SDK; (ii) extracting Android Logcat
tags [6] of the sink classes which may embed plaintext class
names, as demonstrated in Google’s official document [6];
and (iii) correlating different apps’ open-port parameters
and tags, e.g., most Alibaba AMap SDK [4] classes are
obfuscated, but we can still find non-obfuscated instances, e.g.,
com.amap.api.location.core.SocketService.
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Fig. 5: Percentage of open-port apps in each Google Play category.

C. Static Analysis Experiments

As explained in Sec. III-C3, we have two sets of apps
for analysis: (i) the top 9,900 apps across 33 Google Play
categories and (ii) the 1,027 apps from AndroZoo that are
confirmed with TCP open ports.

We use the first set to measure the distribution of open-
port apps across different categories. Out of the 9,900 apps
statically analyzed by OPTool, we identify 1,061 apps and their
corresponding 1,453 TCP open ports. Fig. 5 plots a bar chart of
the percentage of open-port apps in each Google Play category.
It clearly shows that open port functionality has been planted
into apps in all 33 Google Play categories, ranging from the
lowest 2.67% in “Libraries & Demo” to the highest 26.67% in
“Tools”. After excluding Facebook SDKs, the percentage drops
to between 0.33% in “Art & Design” and 12.0% in “Video
Players & Editors”. This suggests that open ports may have a
wider adoption in mobile systems than that in the traditional
PC environment.

We then use the second set of apps to quantify the
effectiveness of crowdsourcing in a comparison with static
analysis, as mentioned in Sec. III-C3. Out of the 1,027 open-
port apps as ground truth, OPTool flags 671 apps with potential
Java open-port constructions and 98 apps with native open-port
constructions. Among the remaining 258 (25.1%) apps, 110 of
them implement open ports via dynamic code loading4, and
the rest of 148 apps are likely equipped with advanced code
obfuscation (e.g., multiple anti-virus apps, such as Avast shown
in Table I, appear in this set). For the 671 apps analyzed by
OPTool for open-port parameters, it successfully recovers the
parameters of 459 apps and identifies 48 statically unresolvable
cases (e.g., values from EditText). Other cases are mainly
due to the complex implicit flows (e.g., [43], [55]) that OPTool
currently cannot address, even we have adopted the state-of-
the-art methods [40], [42], [44]. We argue that in an “ideal”
situation (where all 98 apps with native constructions are
successfully analyzed and 48 statically unresolvable cases are
included), a typical static analysis tool can detect only 58.9%
of open-port apps that are discovered by our crowdsourcing
approach.

4We measure it via DexClassLoader and PathClassLoader APIs.
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TABLE III: Open-port SDKs detected in our dataset, and the number of apps affected by them.
SDK Pattern #

Facebook Audience Network SDK [17] Class=‘com.facebook.ads.%’, Tag=ProxyCache, Ip=127.0.0.1, Port=0, Backlog=8 897
Yandex Metrica SDK [38] Class=‘com.yandex.metrica.%’, Port=29009|30102 28

CyberGarage UPnP SDK [14] Class=org.cybergarage.http.HTTPServer, Ip=getHostAddress(), Port=8058|8059 19
MIT App Inventor SDK [25] Class=com.google.appinventor.components.runtime.util.NanoHTTPD, Port=8001 19
Tencent XG Push SDK [36] Class=com.tencent.android.tpush.service.XGWatchdog, Port=RANDOM+55000 13

Corona Game Engine SDK [13] Class=com.ansca.corona.CoronaVideoView, Port=0, Backlog=8 11
Alibaba AMap SDK [4] Class=‘com.amap.%’, Port=43689 9
Millennial Ad SDK [24] Class=‘com.millennialmedia.android.%’, Tag=MillennialMediaAdSDK, Ip=null, Port=0 8

PhoneGap SDK [28] Class=com.phonegap.CallbackServer, Port=0 6
Titanium SDK [37] Class=org.appcelerator.kroll.common.TiFastDev, Tag=TiFastDev, Port=7999 6

Aol AdTech SDK [8] Class=com.adtech.mobilesdk.publisher.cache.NanoHTTPD, Port=RANDOM+9000 6
Apache Cordova SDK [9] Class=org.apache.cordova.CallbackServer, Port=0 4

Getui Push SDK [18] Class=‘com.igexin.push.%’, Port=48432|51688, Ip=0.0.0.0 3

Considering both sets of apps and focusing on those with
their parameters successfully recovered by OPTool, we further
analyze the 1,520 (1,061 + 459) apps with open ports in the
next two subsections.

D. Detection of Open-Port SDKs

Out of these 1,520 apps, we are able to detect 13 open-
port SDKs that affect at least three apps each in our dataset.
Table III lists their details, including the class pattern (we use
“%” to represent obfuscated fields), the Android Logcat tag
(if any), raw open-port parameters, and the number of affected
apps. Note that the app number here is the number of apps that
actually invoke the SDK code, because some apps may embed
an open-port SDK but never invoke it. For example, we found
a total of 1,110 apps embedding Facebook Audience Network
SDK [17] but only 897 of them triggering the SDK code.

These SDKs are invoked in 1,018 apps (a few apps embed
multiple SDKs), and only 581 open-port apps are not affected
at all. In other words, 61.8% of the 1,520 open-port apps are
solely due to SDKs, among which Facebook SDK is the major
contributor. Even after excluding the impact of Facebook SDK,
we could still count 117 (16.8%) open-port apps that are solely
due to SDKs. These results indicate that SDK-introduced open
ports are significant and should be considered seriously in
terms of their necessity as we will discuss in Sec. VI.

We take a closer look at Table III to see what kinds
of SDKs introduce open ports and whether it could raise
an alarm to developers. We find that only three SDKs, the
UPnP SDK from CyberGarage [14] and two mobile push
SDKs [18], [36], are networking related. The others are
about advertisements [8], [17], [24], [38] (e.g., Facebook
and Yandex), Javascript generation [9], [25], [28], [37] (e.g.,
App Inventor and PhoneGap), gaming engines [25] and map
navigation [4]. Hence, we argue that developers could hardly
realize the existence of these open ports by simply examining
their functionality.

E. Identification of Insecure API Usages

We further analyze the 581 apps whose open ports are
not introduced by SDKs, and their corresponding 869 open
ports. We find that 515 port constructions did not set the
IP addr parameter and 96 ports set it as “null”. Hence,
the default setting of addr, i.e., the ANY IP address, is
automatically used for these ports. In total, these convenient

API usages account to 611 open ports from 390 apps (67.1%).
Furthermore, 164 of these ports (coming from 120 apps)
have their port parameter set as random, which has nearly
no chance of being able to accept external connections and
thus binding to the ANY IP address clearly increases their
attack surfaces. This translates to a (lower bound) estimation
of 26.8% of the 611 convenient API usages being insecure,
and correspondingly 20.7% (120/581) open-port apps adopting
convenient but insecure API usages.

Such an insecure coding practice is not limited to app
developers but also SDK producers. In Table III, six SDKs
make a random port yet using the default addr parameter
binding the port to ANY IP addresses. Hence, Google may
reconsider the design of ServerSocket APIs to enhance
its security at the API level.

V. SECURITY ASSESSMENT

In the last phase of our pipeline (Fig. 1), we perform
comprehensive security assessment of open ports in three
directions: vulnerability analysis in Sec. V-A, denial-of-service
attack evaluation in Sec. V-B, and inter-device connectivity
measurement in Sec. V-C.

A. Vulnerability Analysis of Open Ports

According to our experience of analyzing open-port vul-
nerabilities over more than two years, it is easy for open-
port apps to become vulnerable, especially for TCP open
ports that do not provide system networking services as UDP
open ports (as explained in Sec. III-C1). Therefore, instead
of developing tools to detect individual vulnerable open ports,
we attempt to uncover vulnerability patterns in popular apps
that are usually more representative and more difficult to
detect. Hence, our vulnerability analysis is quite different
from the previous work [52] that uses pre-defined pattern for
vulnerability detection. Instead, we explore all possible ways in
which an open port could become vulnerable, as long as they
fit our threat model discussed in Sec. II, by performing in-
depth reverse engineering via the state-of-the-art JEB Android
decompiler [21] and extensive dynamic testing.

Table IV summarizes the five vulnerability patterns we have
identified. The first two have been reported in [52], while the
third is a new variant of the crash vulnerability mentioned in
the traditional Android app security research [49]. The last two
have not been reported and they are specific to open ports.
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TABLE IV: Vulnerability patterns identified in open ports.
ID Vulnerability Patterns Representative Apps Affected

P1 No/insufficient checks for Samsung Gear, Cloud Mail.Ru,
information transmission Vaulty, ES File Explorer

P2 No/insufficient checks for Tencent XG Push SDK,
command execution Baidu Root, Coolpad V1-C Phone

P3 Crash-of-Service (CoS) Skype, Instagram
P4 Stealthy Data Inflation Facebook SDK, Instagram
P5 Insecure Analytics Interface Sina Weibo, Alibaba & Baidu SDKs

P1: No or insufficient checks for information trans-
mission. One major usage of (TCP) open ports is to transmit
data to the connecting parties. However, apps may employ
weak authentication or even no authentication, which allows
unauthorized access to sensitive contents. We identify this
type of vulnerabilities in ES File Explorer, Cloud Mail.Ru,
and a popular photo/video hiding app called Vaulty. For
example, Cloud Mail.Ru’s TCP port 1234 leaks users’ videos
at http://127.0.0.1:1234//filename, where the
name can be leaked by eavesdropping Cloud Mail.Ru’s broad-
cast messages [45]. Similarly, Vaulty leaks users’ sensitive
videos and pictures to a remote adversary through port 1562,
and the adversary does not even need to know the target
filename because only an integer starting from one is required.
ES File Explorer’s always-on TCP port 59777 performs some
security checks by validating the IP addresses of incoming
requests with a white list. However, there is also an implicitly
exposed [45] Activity component for adding a remote
adversary’s IP address to the white list.

A particularly interesting example is Samsung Gear
and other built-in apps based on the Accessory ser-
vice [30] mentioned in Sec. III-C. Samsung Acces-
sory provides an automatic (service) discovery feature
via TCP port 8230, but replies with sensitive informa-
tion, e.g., GT-I9305;samsung;UserName(GT-I9305)
;SWatch;SAP_TokenId(omitted), to any connecting
party. Generally, it is important, yet challenging, to return only
appropriate information in such UPnP-like apps (e.g., 19 apps
using CyberGarage UPnP SDK; see Table III).

P2: No or insufficient checks for command execution.
Another usage of open ports is to execute commands sent by
authorized clients. We can see such open-port usage in Tencent
XG Push SDK for executing push commands and the Coolpad
V1-C phone’s vpowerd system daemon for shutdown and
reboot commands. However, the command interfaces in both
cases are not well protected.

We also notice that some open ports are used as a de-
bugging interface. For example, MIT App Inventor [25] and
Titanium SDK [37] in Table III use open ports for instant
debugging or the so-called living programming [70]. This
debugging interface, however, must be disabled in release
versions; otherwise, sensitive debugging information could be
leaked. For example, Baidu Root, a popular rooting app in
China, suffers from this vulnerability in its TCP port 10010
(bound to the host IP address).

P3: Crash-of-Service. Apps could crash when receiving
malformed inputs from their open ports — we call this Crash-
of-Service (CoS). Traditionally, Android apps suffer from CoS
due to inter-component communications [49]. Now open ports
provide a new channel for launching CoS. For example, we
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Fig. 6: The model of using open ports for analytics.

can crash Instagram by sending it an invalid HTTP URL via
the open ports. We also find that SIP VoIP apps (e.g., built-in
apps using the standard VoIP port 5060 as discussed in Sec.
III-C) could be victims of CoS attacks. Here we analyze Skype
voice/video calls’ VoIP-like mechanism — it uses one UDP
port for receiving control messages from a Microsoft Azure
server, and another UDP port for exchanging media data with
the other Skype user in a P2P mode. Unfortunately, a remote
adversary can terminate the on-going Skype session by just
sending two packets to the first UDP port. This leads to a very
effective CoS attack without even involving application-layer
packets.

P4: Stealthy data inflation. Many open ports are for
caching purposes (or as connection proxies in VPN apps). For
example, Facebook SDK uses its open ports to cache video-
based advertisements. Individual apps, such as Instagram, can
also build their own cache servers upon an open-source library
called AndroidVideoCache [7]. Since these apps typically
support opening arbitrary URLs via the open ports, one can
easily launch stealthy data inflation attacks. Specifically, an
adversary can send special URLs, e.g., an URL pointing to
a large file, to maliciously inflate victim apps’ cellular data
usage in the background. This process is fully stealthy without
catching user attention, and the data usage is attributed to the
victim app.

Our vulnerability reports on Facebook SDK and Instagram
were confirmed by Facebook in March 2017 with two bug
bounty awards, which demonstrate the effectiveness of the
stealthy data inflation attack. Generally, it is applicable to
any open port with the caching or proxy functionality, e.g.,
most of the 997 apps with a local random TCP port (see Sec.
III-C1) and Corona Game Engine SDK (in Table III). The only
exception we have seen is the open port on YouTube, which
uses a checksum to restrict opening illegal URLs.

P5: Insecure analytics interface. Lastly, we present a
special vulnerability pattern that appears in open port used
as an analytics interface, which is used by host apps/SDKs’
campaign websites to retrieve analytics information. Fig. 6
depicts its basic architecture, in which a victim user has
installed an app a that hosts an analytic open port p (with
a fixed port number num). Whenever a user visits a web
page w (that has a campaign relationship with a) from her
mobile browser or from user-shared links in social apps, w
sends an HTTP request to http://127.0.0.1:num/cmd
with the by-default added HTTP referrer pointing to the URL
of w. The analytics app receives the request over its open port
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Wireshark IO Graphs: WeChat_UDP32857_phone
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(a) WeChat’s voice call (DoS at ∼26s).

Wireshark IO Graphs: Youtube_UDP64352
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(b) YouTube’s video streaming (DoS at ∼32s).

Wireshark IO Graphs: airdroid
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(c) AirDroid’s file transmission (DoS at ∼13s).

Fig. 7: DoS attacks against open ports. The x-axis is the time in seconds, and the y-axis is the victim apps’ throughput (packets/sec).

and checks whether the request is from a campaign website
through the HTTP referrer. If it is, the app executes one of its
pre-defined commands as requested by the cmd parameter. A
common command is geolocation, upon executing which
the geographical location of the device is returned to the web
page.

However, such open-port usage is fundamentally insecure,
because any other local apps or even a remote adversary (if the
open port bound to the host IP address, which is often the case)
can set an arbitrary referrer in their HTTP requests to execute
privileged commands (e.g., retrieving IMEI and list of installed
apps). We uncover this class of vulnerabilities in Sina Weibo,
Alibaba AMap SDK, and two Baidu SDKs (which were fixed
quite long ago and thus not in Table III). We reported these
issues to the vendors in the first half of 2015, much earlier
than the subsequent industrial reports (e.g., WormHole [32])5.

B. Denial-of-Service Attack Evaluation

We now evaluate denial-of-service (DoS) attacks against
mobile open ports and their effectiveness. Note that this
analysis differs from those in Sec. V-A in that DoS attacks
are typically possible even without exploiting any code-level
vulnerabilities. Different from the traditional DoS attacks that
often require a large number of bots (i.e., compromised com-
puters), we show that DoS targeting mobile open ports can
be performed by a single adversary using much less powerful
devices (e.g., just one laptop), because the victim has much
more limited computation, memory, and networking capabil-
ities. Specifically, an adversary can first scan a WiFi/LTE
network to identify targets (those with open ports) and then
send large (number and/or size of) packets to deny victims
from certain services or downgrade their quality of service.
Therefore, this DoS attack is mostly effective for UDP ports
that are open for communication purposes (recall that we have
discovered 1,390 apps containing such ports; see Sec. III-C).

Fig. 7 shows the experimental results of DoS attacks
against WeChat, YouTube, and AirDroid in an isolated WiFi
network. The victim is a Samsung S6 edge+ phone, and we
use hping3 [19] on a MacBook Pro (with 2.9 GHz CPU
and 16GB memory) to flood UDP ports opened by WeChat
and YouTube as well as TCP ports opened by AirDroid. Fig.
7(a) shows that the throughput of WeChat’s voice call drops
to 50% when the attack launches at the 26-second mark,
and is fully denied at around 50 seconds (forcing WeChat to
automatically terminate the voice call). Fig. 7(b) and Fig. 7(c)

5A list of our original reports (in Chinese) can be found at https://tinyurl.
com/opWooyun, and cached at https://tinyurl.com/opDropbox.

(a) A list of networks scanned. (b) Detailed results of one scan.

Fig. 8: User interfaces in NetMon for network scans.

respectively show that the throughput of video streaming on
YouTube and file transmission on AirDroid drop significantly
right after the attack begins. Cellular networks, on the other
hand, are less affected by such DoS attacks according to
our tests, mainly because of their limited uplink throughput
(attackers have to also use cellular to launch DoS as user
devices in most cellular networks use private IP addresses; see
our measurements in Sec. V-C). We expect the effectiveness
of the attacks on cellular networks be significantly improved
when client devices are assigned with public IP addresses and
in the upcoming 5G era [1], [20].

C. Inter-device Connectivity Measurement

Most of the vulnerabilities and attacks demonstrated so far
rely on connectivity to the victim device. To measure the extent
to which such inter-device connectivity is allowed in public and
private networks around the world, we embed a second service,
the network testing component, in NetMon. Fig. 8 presents
its two user interfaces, in which Fig. 8(a) shows a partial
list of networks scanned and the detailed results are shown
in Fig. 8(b). We can see that NetMon provides most of the
functionality in typical network scanning apps (for attracting
users to use this service in our app), and performs tests for
the inter-device connectivity. The following three policies are
tested in both WiFi and cellular networks, an effort never
pursued before.

Inter-Pingable: whether an ICMP Ping packet could be trans-
mitted from one device to another. This tests the basic
inter-device connectivity of a network. To measure it, we
leverage the ping program to issue ICMP requests to
neighboring hosts whose IP addresses share a common
24-bit prefix (i.e., ping around 28 IP addresses).

Inter-TCPable and Inter-UDPable: whether a TCP/UDP
packet could be transmitted from one device to another.
To test them, NetMon launches TCP SYN and UDP
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scans to all Pingable hosts. In each scan, NetMon sends
a SYN packet or a small UDP packet to a target port
number (randomly selected from the list of TCP/UDP
open ports based on the results in Sec. III-C). If NetMon
could receive a response (including failure packets, e.g.,
RST for TCP and ICMP port unreachable for UDP), we
conclude that the inter-TCPable or inter-UDPable policy
is employed.

Through the crowdsourcing deployment discussed in Sec.
III-C, NetMon performs network connectivity tests in the wild.
Similar to its port monitoring component, the network testing
component is also very energy efficient — only 33.01KB
consumed on average in one scan in an LTE network. By
gathering and aggregating 6,391 network scans, we report the
result and analysis on the inter-device connectivity for the
first time for 224 cellular networks and 2,181 WiFi networks
worldwide.

We find that almost 50% of the cellular networks (111
networks, 49.6%) allow their devices to ping each other,
including AT&T, T-Mobile, Verizon Wireless, China Mobile,
EE (in UK), Orange (in France), Airtel (in India), Celcom (in
Malaysia), and SingTel (in Singapore). All of these 111 cellular
networks also allow cross-device TCP packets, but the inter-
UDPable tests fail in 14 networks, probably because they filter
the ICMP unreachable messages sent by a closed UDP port.
Note that we did not test networks that filter Ping packets while
allowing TCP/UDP packets.

WiFi networks seem to have even worse security in terms
of the inter-device connectivity in that 83.6% (1,823 out of
2,181) allow devices to ping each other. The inter-TCPable
and inter-UDPable policies are also generally supported among
the inter-Pingable WiFi networks with 95.6% and 88.3%
success rates, respectively. The unsuccessful cases are probably
due to their WiFi routers/APs filtering TCP RST and ICMP
unreachable packets. University campus WiFi, enterprise office
WiFi, airport WiFi, hotel WiFi, public transportation WiFi,
and department store WiFi are among those that support inter-
device connectivity. Allowing inter-device connectivity in these
public-domain WiFi will facilitate remote open-port attacks.

Furthermore, 23 cellular networks (10% of all cellular net-
works tested) and 10 WiFi networks (including the “eduroam”
WiFi provided by two universities in the US) assign public IP
addresses to their users, which allow not only intra-network
connectivity but connectivity from any host on the Internet.
This is astonishing as it opens up exploit opportunities to any
adversary on the Internet.

VI. MITIGATION SUGGESTIONS

To mitigate the threats of open ports, we propose counter-
measures for different stakeholders in the Android ecosystem,
including app developers, SDK producers, system vendors, and
network operators.

App developers. The first thing developers need to assess
is whether an open port is necessary. For example, for local
inter-app communication, using LocalServerSocket [23]
is more secure than establishing ServerSocket. If open
ports are really needed, developers should minimize the attack
surface by avoiding insecure coding behaviors as discussed

in Sec. IV-E and employ effective authentication against un-
intended access. Moreover, we suggest developers to use our
NetMon app to evaluate a third-party SDK before including it.

SDK producers. Similarly, SDK producers should use
open ports only when there are no better alternatives. For
example, Facebook could reconsider its caching mechanism
via an open port in its SDK. In particular, SDKs should
abandon using open ports for the analytics purpose, because it
is fundamentally insecure (see Sec. V-A).

System vendors. Besides having vendors assess open ports
in their built-in apps carefully, Google can consider taking
more proactive measures. For example, a new permission
dedicated for the open port functionality, beyond the general
INTERNET permission, could be introduced, so that both
developers and users are better aware of it. As explained in Sec.
IV-A, Google could also modify existing ServerSocket
APIs to better cope with open ports in mobile environment.

Network operators. To stop remote open-port attacks, a
quick mitigation is to restrict inter-device connectivity. For
cellular or certain public WiFi networks (e.g., in airports),
it is reasonable for them to prioritize the security for the
safety of their users. Private WiFi networks (e.g., enterprise
networks) may even leverage software-defined networking to
better regulate such connectivity.

VII. RELATED WORK

Open port research. Traditionally, research on open ports
focus on DoS attacks [64] and Internet scanning studies [53],
[72]. This has been changed in the mobile era — more specific
attacks [57], [79], [83] have been demonstrated on open ports
of mobile apps. Another relevant study is on Android Unix
domain sockets [71], as discussed in our background section
(Sec. II). However, studies specifically focused on mobile open
ports are not available until recently [52].

Although OPAnalyzer [52] is closely related to our paper,
there are a number of significant differences. The foremost
difference is in the objectives. We aim at a systematic un-
derstanding of open ports in the wild, while OPAnalyzer
focused on detecting vulnerable apps that satisfy the taint-
style code patterns. The approaches adopted are therefore
very different. For example, there are no crowdsourcing or
networking analysis in OPAnalyzer, and its static analysis
does not resolve open-port parameters for an in-depth analysis
(e.g., identifying SDKs and diagnosing insecure API usages)
as our paper does. Furthermore, OPAnalyzer does not show
any results for UDP ports and built-in apps.

Crowdsourcing for security. With the high popularity of
mobile apps, it becomes realistic to leverage the crowd to
discover security problems in the wild. By deploying NetMon
to Google Play for a crowdsourcing study, we are among
the first in this line of research. Other related works include
Netalyzr [75] for studying middleboxes in cellular networks,
FBS-Radar [56] for uncovering fake base stations in the wild,
UpDroid [74] for monitoring sensitive API behaviors on non-
rooted devices, and Haystack [69] for detecting mobile apps’
privacy leakage via on-device app traffic analysis [80].

Android static analysis. Static analysis has been used
extensively to understand the (in)security of Android apps.
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They have been applied to malware analysis (e.g., [59], [68],
[77], [85]), privacy leakage detection (e.g., [58], [60], [61]),
vulnerability discovery (e.g., [47], [63], [81], [82], [84], [87]),
and so on. Two analysis frameworks, FlowDroid [40] and
Amandroid [76], are proposed to simplify tool development.
For example, OPAnalyzer [52] is built upon Amandroid to
forwardly track the flows between server sockets’ accept()
calls and sinks. However, it cannot analyze open-port param-
eters due to the lack of a backward-style parameter tracking
engine. There are a few static tools for parameter analysis,
but they cannot be applied to our problem due to limitations,
such as no complete parameter representation in SAAF [51],
no array handling [86], and no open port relevant API mod-
eling [42]. We address these issues by introducing the back-
ward slicing graph and semantic-aware constant propagation.
Besides uncovering open-port parameters, our OPTool is also
the first static analysis tool able to detect open-port SDKs in
Android apps.

VIII. CONCLUSION

In this paper, we proposed the first open-port analysis
pipeline to conduct a systematic study on open ports in An-
droid apps and their threats. By first deploying a novel crowd-
sourcing app on Google Play for ten months, we observed the
actual execution of open ports in 925 popular apps and 725
built-in apps. Crowdsourcing also provided us a more accurate
view of the pervasiveness of open ports in Android apps:
15.3% discovered by our crowdsourcing as compared to the
previous estimation of 6.8%. We then showed the significant
presence of SDK-introduced open ports and identified insecure
open-port API usages through the static analysis enhanced
with open-port context and semantics. Furthermore, we un-
covered five vulnerability patterns in open ports and reported
vulnerabilities in popular apps and widely-embedded SDKs.
The feasibility of remote open-port attacks in today’s networks
and the effectiveness of denial-of-service attacks were also
experimentally evaluated. We finally discussed mechanisms for
different stakeholders to mitigate open-port threats.
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