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Abstract. Stack-based attacks typically require that attackers have a
good understanding of the stack layout of the victim program. In this
paper, we leverage specific features on ARM architecture and propose a
practical technique that introduces randomness to the stack layout when
an Android application executes. We employ minimal binary rewriting
on the Android app that produces randomized executable of the same
size which can be executed on an unmodified Android operating system.
Our experiments on applying this randomization on the most popular 20
free Android apps on Google Play show that the randomization coverage
of functions increases from 65% (by a state-of-the-art randomization ap-
proach) to 97.6% with, on average, 4 and 7 bits of randomness applied
to each 16-bit and 32-bit function, respectively. We also show that it
is effective in defending against stack-based memory vulnerabilities and
real-world ROP attacks.

Keywords: Memory layout randomization, Android security

1 Introduction

Stack plays an essential part in maintaining and managing runtime data of an
execution, e.g., context of function invocation, parameters, and local variables.
Many attacks are based on disclosure or modification of such information on the
stack. Examples include traditional code injection attacks that overwrite sensi-
tive data, e.g., return addresses and function pointers, to execute the injected
malicious code [1], and more recent code reuse attacks that chain existing code
gadgets together to perform malicious activities [2–5].

A common requirement of such stack-based attacks is a good understanding
of the stack layout by attackers. Applications with predictable stack layout are
typically exposed to the high risks of such attacks. This requirement of knowing
the stack layout becomes more critical in recent Return-Oriented Programming
(ROP) attacks because an attacker needs to put more efforts in arranging data
on the stack to chain various code gadgets together [2, 6–9].
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Randomizing the stack layout is a natural response to make it more diffi-
cult for attackers to locate critical data. Modifications have been proposed to
operating systems to introduce such randomness. For example, Address Space
Layout Randomization (ASLR) randomizes the base address of many code/data
segments, and is widely used in both x86 and mobile platforms [10–12]. However,
researchers have been questioning such randomization techniques with modified
operating systems in their effectiveness (or amount of randomness) [13,14], com-
pleteness [15–17], and many claim that they can be circumvented with advanced
attacking techniques like Return-Oriented Programming [5, 8].

Randomness could also be introduced to the application alone without modi-
fications to the operating system [18–20]. However, this has since been considered
as a less favorable solution mainly due to the difficulty in binary rewriting the
application as well as the relatively low applicability and amount of random-
ness [21]. Binary rewriting an executable could be problematic especially when
the size of a function in the resulting binary increases, which means that all
instructions in the subsequent functions have to be shifted and all jump targets
affected have to be recalculated. This can sometimes be avoided with tricks like
re-ordering of functions [13], but is in general an unsolved problem that puts
heavy stress on its applicability.

In this paper, we explore how far we can go in terms of introducing random-
ness into the stack layout with some minimal rewriting to the executable binary
without any operating system support. By minimal binary rewriting, we exercise
the restriction that no insertion or deletion of instructions is allowed, which also
implies that the program size will remain unchanged.

We show that a reasonable amount of randomness of up to 7 bits to many
functions is possible by leveraging special features of the ARM architecture when
binary rewriting Android applications. Our solution does not require any mod-
ification to the Android operating system. The main idea is to randomize the
set of registers to be pushed onto the stack at prologue of a function (and the
corresponding registers to be popped). For example, a function might be sur-
rounded with push {r3,r4,r5,lr} and pop {r3,r4,r5,pc} to store registers
used in the caller function. Our technique randomly chooses a superset of the
registers, e.g., {r1,r3,r4,r5,r8,r9,lr}, to be pushed onto (and popped off)
the stack. This change effectively adds a random amount of data on the stack
and shifts all other data on the stack frame by a random offset. The intuition
behind such a design is that this change requires a simple mutation to the push
and pop instructions which change neither the length of the instructions nor the
overall size of the app on ARM architecture.

We implement a proof-of-concept binary rewriter to automatically apply this
randomization to Android apps. We show that many existing code reuse attacks
no longer work with our randomized Android apps. Our experiments with the
most popular 20 free Android apps on Google Play also show that the random-
ization successfully applies to more than 97.6% of the functions, a noticeable
increase from 65% achievable by previous state-of-the-art randomization tech-
niques [15]. Every function receives, on average, 7 bits of randomness to their
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location on the stack when it uses 32-bit ARM/Thumb instructions or 4 bits of
randomness if it uses 16-bit Thumb instructions. Experiments on a format-string
vulnerability and a real-world ROP attack show that our proposed randomiza-
tion is effective in defending against real-world attacks.

2 Background and Threat Model

As our proposed technique deals with binary rewriting of Android apps to be
executed on ARM devices, we first briefly present some necessary background of
ARM instructions and registers. We also present the threat model under which
our proposed solution works.

Any ARM binary (containing native code from shared libraries or Dalvik
bytecode compilation) may contain both ARM and Thumb-2 instructions. ARM
is a 32-bit fixed-length instruction set. Thumb-2, developed from 16-bit Thumb
instructions, constitutes an instruction set with 16-bit and 32-bit instructions
intermixed. This brings flexibility and performance; however, the difference in
instruction length also makes binary analysis and rewriting more difficult.

ARM architecture provides 16 core registers of 32-bit length for ARM and
Thumb-2 instructions. These registers are labeled r0 to r15. Registers from r12

to r15 are also known as the ip, sp, lr, and pc register. During a function call,
registers from r0 to r3 are used to store parameters if needed, lr is used to store
the return address, and r0 is used to keep the return value. A function typically
uses some but not all registers.

We assume a threat model in which the adversary has a copy of the origi-
nal application (without randomization) and understands the full details of our
randomization algorithm. The adversary may also have multiple copies of the
randomized app; although he/she does not have the specific randomized copy
that the victim is using. We also assume that the app might contain some ex-
ploitable vulnerabilities that the adversary is aware of.

3 Randomizing Stack Layout and Application Scenarios

Recall that our objective is to introduce randomness to the stack layout when
an Android app executes, and to do so with minimal binary rewriting without
operating system support. In this section, we present the high-level idea of our
design and a few scenarios in which our proposed solution might be applied.

3.1 Randomization Design

Fig. 1 shows the native code of a function in an Android app and the correspond-
ing stack layout when it executes. The function first pushes registers r4, r5, r6,
and lr onto the stack, performs its execution during which r4, r5, and r6 are
used as temporary storage, and finally pops data out of the stack into r4, r5,
r6, and pc. Randomizing this stack layout is to make the location of data on the
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stack frame unpredictable from the attacker. Considering possible ways of doing
so with binary rewriting only (recall that we do not want to modify the operat-
ing system), one could introduce random padding to the base (as done in one of
the previous state-of-the-art randomization techniques [10]), or to introduce the
random padding among data objects in the stack frame [16,22].

...

...

arg_6

arg_5

lr

r6

r5

r4

...pc

sp

func(int, int, int, int,
     int, char const*)

  push   {r4, r5, r6, lr}  
  sub    sp, #0x4c
  ldr    r6, [sp, #0x64]
  adds   r4, r0, #0x0
  adds   r5, r1, #0x0
  adds   r0, r6, #0x0    
  str    r3, [sp, #0x4]
  blx    strlen@PLT
      ... 
  adds   r0, r4, #0x0      
  adds   r1, r6, #0x0
  blx    strcpy@PLT
  add    sp, #0x4c         
  adds   r0, r4, #0x0
  pop    {r4, r5, r6, pc}
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function 
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Fig. 1: An example of native code execution

However, we will not be able to introduce padding among the various data
objects due to our requirement of doing minimal binary rewriting without ad-
dition or deletion of instructions. What we could do, though, is to modify the
push instruction to have a random set of additional registers pushed, as shown
in Fig. 2, effectively randomizing the base of the stack frame. In this example,
we additionally push r2 and r7. In general, for 16-bit Thumb instructions, the
set of general registers that can be pushed and popped includes 8 registers r0
to r7. For ARM and 32-bit Thumb instructions, the set contains 13 registers r0
to r12. Besides them, lr and pc can also appear on the list.

This design of pushing and popping a random set of registers satisfies our
requirement of minimal binary rewriting because ARM architecture uses a s-
ingle push or pop instruction to push or pop any number of registers, and the
instructions to push/pop different sets of registers are of the same length — a
feature that is very different from the x86 platform.

To maintain semantic equivalence with the original app for proper execution,
there are a few things we have to take note. First, the same set of registers
are to be pushed and popped; otherwise our modification could have modified
the execution context of the caller function. Second, any references to memory
locations on the stack frame between the push and pop instructions are to be
updated with the modified offsets. Lastly, note that r0 cannot be added to the
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Fig. 2: Randomized set of registers pushed onto the stack

set of padding registers when it is used to store the return value, since popping
r0 would overwrite the return value stored.

3.2 Application Scenarios

Our system can be implemented as a third-party Android app to introduce
randomization to the subject app (and potentially re-package it and re-sign
it). This satisfies our requirement of not modifying the operating system while
achieving the objective of randomizing stack layout. However, there are a few
ways in which we can gain better user experience and security.

We can perform the binary rewriting right after app installation. The binary
to be rewritten could be the original native code included in the installation
package or the oat file compiled during installation (when ART runtime is used).
This would not require re-packaging of the rewritten app.

We could also perform the binary rewriting every time the app starts its
execution. This has the advantage that a new and different randomization is
used every time the app is loaded, making it even harder for an attacker to
predict the stack layout.

In either case, minimal changes are needed to the Android application in-
staller or loader, and the binary rewriting becomes completely transparent to
the end user. Also note that our proposed randomization can be used in con-
junction with other existing security mechanisms, e.g., ASLR on Android.
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4 Implementation

As a proof-of-concept implementation, our automatic binary rewriting has been
implemented in Python with about 2000 LOC. It takes as input any Android app
and outputs the randomized app ready for installation and execution on Android
4.0 or later. We first extract the binary files from the Android app, disassemble
them, and discover functions and the push and pop instruction pairs. For each
pair identified, we flip a coin and apply our randomization design to change
the set of registers accordingly. After that, we update the offset of operands in
affected instructions to be consistent with the randomization applied. In the rest
of this section, we present details of our implementation in each step and show
the complexity involved.

4.1 Static Analysis

In this step, we discover all functions that are candidates of applying our random-
ization, find out all push and pop instruction pairs, and discover all instructions
for which the offsets need to be updated. We use Hopper4, a powerful disassem-
bler, to disassemble the binary file.

However, the mixture of ARM instructions (32-bit) and Thumb instructions
(16-bit and 32-bit) and the existence of embedded constants between instruc-
tions sometimes make Hopper incorrect in disassembling all instructions. We use
analysis results from Hopper as a reference and conduct more in-depth analysis
to ensure the completeness and correctness of static analysis.

Function Discovery Our analysis performs recursive disassembling of instruc-
tions and functions by starting with functions listed in the exported function
table and tracing control flow targets of blx and bl. Hopper fails to recognize
blx and bl proceeded functions when the target of blx or bl is a function that
never returns back to its caller, e.g., when the target is an exception handler.
Listing 1 in Appendix A shows an example of this case.

We solve this problem by recognizing the multiple prologue instructions in a
function recognized by Hopper which signals the identification of a new function.

Push/Pop Instructions For each function discovered, we need to find all
epilogue instructions to apply the randomization to ensure correct execution
and semantic equivalence. Here are some cases that require special attention.

CASE 1: Multiple Epilogue Instructions It is not uncommon for a function to
have multiple returns and the corresponding (multiple) epilogue instructions
(Listing 2 in Appendix B shows an example). It is important that we identify and
change all these epilogue instructions to maintain balance of the stack. We make
sure not to miss any epilogue instructions by constructing the intra-procedure
control flow graph for each function and identifying all leaf nodes.

4 Hopper Disassembler: http://www.hopperapp.com

http://www.hopperapp.com
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CASE 2: push-proceeded Prologue There could be additional push instructions
before a function prologue (Listing 3 in Appendix B shows an example). For
simplicity, we randomize only the push and pop instructions pairs involving
register lr.

CASE 3: Unmatched push and pop There are scenarios in which the set of
registers pushed and popped in a function prologue and epilogue does not match
(Listing 4 and Listing 5 in Appendix B are two examples). To maximize the
opportunities of randomization, we go ahead and apply our binary rewriting in
both cases. We exercise extra care in these cases, though, to make sure that
the sequence (not just the set) of registers pushed and popped maintain the
same one-to-one mapping before and after randomization (see the examples in
Appendix B).

4.2 Randomization and Updating Offsets

We flip a coin here to determine the set of registers to be pushed in addition
to those included in the original prologue and epilogue. The candidate set of
registers from which we can choose includes r1 to r11 for ARM instructions
and r1 to r7 for Thumb (16-bit and 32-bit) instructions excluding those in the
original prologue and epilogue. Exception goes to some ARM instructions that
use a special constant encoding as explained below.

As discussed in Section 3.1, we have to modify instructions in the randomized
function to make sure that they can access the correct data on the stack which
is now shifted by a random offset. This typically applies to data addressed with
the stack pointer sp (or directly via r11). Figure 8 in Appendix B shows data
in four different regions that require different treatment in our updating.

With the exception of local variables, instructions involving access to data
including stored invocation context, function parameters, and data from the
previous stack frames need to be updated by adding to the original offset the
randomized amount of padding introduced. A complexity arises when trying to
update the offset to a number that cannot be properly represented in the ARM
instruction. This is due to the design of using only 12 bits of instruction space
to represent a useful set of 32-bit constants. If the new offset cannot be properly
represented in the 12-bit “rotation” format, we simply exclude the corresponding
set of registers from the randomization candidate. Note that the required offset
could potentially be represented with (multiple) alternative instructions; we do
not explore this option due to the minimal binary rewriting requirement.

5 Evaluation and Discussions

Our evaluation focuses on the security effectiveness in defending against stack-
based memory attacks. In this section, we present our analysis on the function
coverage, amount of randomness introduced, and demonstrate our capability in
mitigating real-world attacks. To put our analysis into the context of real-world
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applications, we pick the top 20 free Android apps on Google Play as in Jan
2015 and apply our randomization on the native code included in these appli-
cation packages. One of these twenty apps, QRCode Reader, does not include
any native code in its application package, and we therefore did not include it in
our analysis; however, as discussed in Section 3, our randomization could also be
applied to the native code compiled at load time or installation time with some
engineering effort. Our experiments include some widely used native libraries,
e.g., libffmpeg.so and libcocos2dcpp.so. We directly execute every random-
ized app on a Google Nexus 5 phone with Android 4.4.4 to make sure that our
modification maintains the semantics and correctness of execution.

In terms of performance (not the focus of our evaluation in this section),
since there is no extra instruction inserted while performing the instruction ran-
domization and minimal binary rewriting, there is no observable performance
overhead at runtime.

5.1 Function Coverage and Amount of Randomness

Our first evaluation focuses on the number of functions that can be randomized
and the amount of randomness obtained with our proposed scheme. Functions
that cannot be randomized are those with their prologue and epilogue originally
covering all candidate registers, i.e., when r0-r7 were all pushed/popped in a
16-bit Thumb function or when r0-r11 were all pushed/popped in an ARM or
32-bit Thumb function.

Fig. 3 shows the percentage of functions that have various numbers of regis-
ters for randomization (0 means that the function cannot be randomized). Our
evaluation shows that the percentage of functions that cannot be randomized
is 0.8% and 2.4% for 16-bit and 32-bit functions, respectively, which are both
small. We also notice that many functions have large (≥ 6 for 16-bit functions
and ≥ 10 for 32-bit functions) randomization opportunities, average of which
account for 32.75% and 30.28% of all 16-bit and 32-bit functions, respectively.

Here we compare our function coverage with another state-of-the-art stack
layout randomization technique that does not require operating system support
as well. Bhatkar et al. proposed to introduce a randomized padding between
the base of stack frame and the local variables by modifying instructions that
create the space for local variables, typically sub esp, #0x100 for example [15].
They reported a function coverage of 65% – 80%. We apply Bhatkar’s idea
on the 19 Android apps in our experiment and obtain even worse results with
an average function coverage of 9.94% function. This relatively low coverage
is mainly because only functions with at least one local variable would have
instructions like sub esp, #immediate. Android, however, has more general-
purpose registers and applications typically favors using them rather than local
variables. With many functions not using local variable, the applicability of
Bhatkar’s approach on Android applications is low.

We also count the number of available registers for randomization as it tells
us the number of bits of the randomness we introduce for a function frame.
Our evaluation results show that 16-bit and 32-bit functions enjoy an average
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Fig. 3: Percentage of functions with various number of registers for randomization

of 4 bits and 7 bits of randomness, respectively, out of the maximum amount
of randomness of 8 (for the entire set of registers r0 to r7) and 12 (for the
entire set of registers r0 to r11) for 16-bit and 32-bit functions, respectively5.
Note that this is the amount of randomness applied to each individual function
(independently). Functions usually use only a small subset of the registers with
the rest being available for our introducing randomness.

5.2 Randomness among objects inside a function

The previous subsection evaluates the function coverage of our scheme and the
amount of randomness introduced. In this subsection, we walk inside each func-
tion and see the amount of randomness applied to various objects inside a func-
tion. In particular, we count the distribution of data objects over four different
stack regions in Fig. 4. We find that most of data objects that are accessed by
the current function residing in regions that can be randomized. These include
invocation context, parameters, and previous function frames. Only 4.83% of da-
ta objects on average reside in non-randomized invocation context and location
variable regions.

5.3 Defending against Stack-based Vulnerabilities

As shown earlier, our approach can randomize stack data objects with a wide
randomness coverage to defend against stack-based memory vulnerabilities (e.g.,

5 We utilized one fewer bit as we chose not to include r0 for simplicity since it usually
carries the return value; however, it could be included if the function does not return
anything.



10 Y. Liang et al.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

P
E

R
C

E
N

T
A

G
E

APPS

randomized invocation

context

randomized parameters

and previous frames

non-randomized

invocation context

non-randomized local

variables

Fig. 4: How data objects are randomized and distributed in stack regions

buffer overflows). Here we further demonstrate this capability using a concrete
example. Fig. 5 presents a self-designed format string vulnerability that causes
stack data leakage. sprintf in function vulnerable(char* fmt) enables the
attacker to insert an evil format-control string (e.g., "%s"+4×"%p") to retrieve
security-critical data key by supplying four more "%p". Our experiment demon-
strates that such a working exploit fails to succeed with our randomized app.
This is because our approach inserts random padding between objects on the s-
tack and changes the relative distance as shown in Fig. 5. These random padding
r7,r2,r3 successfully relocate the previous function frames in stack and ran-
domize locate the security-critical data key.

...
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r4

info

int func(){

  …

  char *fmt= GetFmt();

  int key = GetKey();

  vulnerable(fmt);

  ...

}

vulnerable(char * fmt){

  char *info=GetInfo();

  sprintf(buf, fmt, info);

  Send(buf);

  ...

}
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Fig. 5: Our randomization in defending against a format string vulnerability
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5.4 Mitigating ROP-based Attacks

Our approach also randomizes gadgets that are potentially employed in build-
ing the execution path of an ROP attack. ROP attacks prefer using indirect
branch instructions residing in functions’ epilogue as gadgets to construct and
drive the malicious control flow. Our approach randomizes functions’ epilogue,
effectively lowering the attacker’s knowledge about gadgets and making ROP
attacks more difficult. We use a recent famous Android system vulnerability,
CVE-2014-7911 [23,24], as an example. This vulnerability can lead to arbitrary
code execution and be exploited to obtain the system privilege [25,26].

We test and analyze its publicly available exploit code [26]. In Fig. 6, we show
the gadgets used by this exploit and the pivoted stack constructed by attackers
(using the stack pivoting technique [27]).

STATIC_ADDRESS + 

GADGET_BUFFER_OFFSET

...

...

Gadget buffer start -

0x4C
0x48 bytes command 

string

1

0xdeadbeef

STATIC_ADDRESS

0xdeadbeef

Stack pivot preparation 

gadget
Point r0 to command 

string gadget

padding

0xdeadbeef

System gadget

padding

Stack pivot gadget

 ldr r7, [r5]
 mov r2, r4
 mov r0, r5
 ldr r1, [sp, #0x10]
 ldr r4, [r7, #0x378]
 blx r4

add.w r7, r7, #8
mov sp, r7
pop.w {r4, r5, 
r6, r7, lr}
add sp, #0xc
bx lr

ldr r0, [r0, #0x48]
pop {r3, pc}

System

1

2

3

Pivoted-stack on heap

1

3

4

2

Gadget 

Buffer

Fig. 6: The real-world exploit [26] for CVE-2014-7911, and it major gadgets.

By analyzing the four major gadgets shown in Fig. 6, we can find that two
of them are randomized by our approach. More specifically, the pop instructions
(marked in red color) in gadget 2 and 3 are added with random registers. Con-
sequently, the attacker-intended stack layout (for entering gadget 4 ) is changed,
and the original control flow from gadget 3 to 4 will be disrupted. The exploit
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code thus fails to invoke the system function. It is worth noting that besides pop-
based instructions, some sp-based data-addressing instructions are randomized
(see Section 4.2).

5.5 Limitations

Although our proposed technique is simple and effective in many aspects, there
are potential attacks that could circumvent our randomization. In particular, an
attacker might want to make use of memory leakage vulnerabilities to find out
the randomized set of registers pushed onto the stack, or the effective addition-
al offset introduced. The recently proposed Just-In-Time code reuse attack [5]
might seem to be a reasonable strategy in achieving this. However, to the best
of our knowledge, this type of attacks have only shown to be possible on appli-
cations that support scripting environment to which most Android applications
are immune.

6 Related Work

Address space layout randomization (ASLR) is probably the most widely de-
ployed randomization technique to make memory attacks more difficult. The
traditional coarse-grained ASLR [10] randomizes the base address of data/code
segments for each program, providing relatively small entropy for randomization
especially on a 32-bit platform [13]. Fine-grained ASLR techniques [18, 21, 28]
proposed recently focus on randomizing code segments to defend against code
reuse technique.

In-place code randomization [21] permutes and substitutes instructions for
basic blocks. Our technique, instead, substitutes instructions to randomize the
memory layout rather than randomizing the code. STIR [18] randomizes address-
es of basic blocks at load-time with a focus on the code segment. Our technique,
on the other hand, randomizes more fine-grained elements in memory layout
of programs and focuses on the data segment. In addition to that, our work is
much easier to implement and has a higher chance to get user acceptance due to
the minimal binary rewriting by leveraging the fixed instruction length on ARM
architecture.

One of the advanced ASLR techniques, stack frame padding proposed by
Bhatkar et al. [15], is probably the closest to our work. Bhatkar et al. intro-
duce padding within a stack frame to randomize the base address by inserting
additional code into the original binary. Our approach achieves the same objec-
tive without inserting new code or deleting existing code while achieving higher
function coverage (see Section 5.1).

There are other randomization techniques proposed for improving security,
e.g., instruction set randomization [29, 30] and control flow randomization [31].
There is also a wide body of research that defend against stack disclosure and
modification without randomization [10,32–34]. Being very different from these
techniques, our work reallocates different types of data on the stack frame and
could defend against more general memory attacks.
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7 Conclusion

In this paper, we introduce a novel stack data randomization method which is
achieved by a lightweight ARM-specific instruction randomization strategy. By
randomly updating the number of registers in the operand of function’s prologue
push and epilogue pop instructions, randomized padding is inserted between
function’s invocation context. Evaluation on real-world applications shows that
out technique covers more than 97.6% functions in an application and introduces
on average 4 and 7 bits of randomness to 16-bit and 32-bit functions, respectively.
More than 95% of objects in functions are randomized with a new address. We
also show the effectiveness of our approach in defending against stack-based
memory vulnerabilities and real-world ROP attacks.
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Appendix

A Missing Functions in Static Analysis

Listing 1: Failure in discovering blx and bl proceeded functions

1 sub_7c893c:
2 007c893c push {r4, r5, r6, lr}
3 007c8940 mov r4, r0
4 ...
5 007c8990 mov r1, r5
6 007c8994 pop {r4, r5, r6, lr}
7 ...
8 007c899c bl sub_7a35e8
9 ---------------------------------

10 007c89a0 push {r4, r5, r6, r7, r8, r9,
r10, lr}

11 007c89a4 sub sp, sp,
12 ....
13 007c89e8 mov r0, r5
14 007c89ec add sp, sp, #0x208
15 007c89f0 pop {r4, r5, r6, r7, r8, r9,

r10, pc}
16 ---------------------------------
17 ...

18 ...
19 ---------------------------------
20 sub_7a35e8:
21 007a35e8 push {r3, r4, r11, lr}
22 007a35ec mov r0, #0x4
23 007a35f0 add r11, sp, #0xc
24 007a35f4 ldr r4, = 0x1f34a4
25 007a35f8 bl __cxa_allocate_exception
26 007a35fc ldr r3, = 0xfffffd60
27 007a3600 add r4, pc, r4
28 007a3604 ldr r3, [r4, r3]
29 007a3608 add r3, r3, #0x8
30 007a360c str r3, [r0]
31 007a3610 ldr r3, = 0xfffffd64
32 007a3614 ldr r1, [r4, r3]
33 007a3618 ldr r3, = 0xfffffd68
34 007a361c ldr r2, [r4, r3]
35 007a3620 bl __cxa_throw

In this example, jump target sub_7a35e8 is an exception handler that does
not return as a normal function would do, and Hopper fails in recognizing the
bl-proceeded function at 0x7c89a0.
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B Complexities in Identifying Push/Pop Instructions

Listing 2: A function with multiple
returns

1 000287bc push {r4, lr}
2 000287c0 subs r4, r0, #0x0
3 000287c4 mov r3, r1
4 000287c8 beq 0x28814
5 000287cc ldr r0, [r4, #0x14]
6 000287d0 cmp r1, r0
7 ...
8 000287e0 bne 0x28808
9 000287e4 ldr r1, [r4, #0x10]

10 000287e8 mov r0, #0x1
11 ...
12 00028804 pop {r4, pc}
13 ------------------------------
14 00028808 blx 0x449b4
15 0002880c mov r0, #0x0
16 00028810 pop {r4, pc}
17 ------------------------------
18 00028814 blx 0x44944
19 00028818 mov r0, r4
20 0002881c pop {r4, pc}

Listing 3: A function with push-
proceeded prologue

1 _Z12formatStringPKcz:
2 0045f628 push {r1, r2, r3}
3 0045f62a push {r4, r5, lr}
4 0045f62c sub.w sp, sp, #0x410
5 ....
6 0045f640 ldr r1, [r2], #0x4
7 0045f646 str r2, [sp, #0x8]
8 0045f648 str.w r3, [sp, #0x40c]
9 0045f64c blx vsprintf@PLT

10 0045f650 add r2, sp, #0x4
11 ...
12 0045f662 cmp r2, r3
13 0045f664 beq 0x45f66a
14 0045f666 blx __stack_chk_fail@PLT
15 ------------------------------
16 0045f66a add.w sp, sp, #0x410
17 0045f66e pop.w {r4, r5, lr}
18 0045f672 add sp, #0xc
19 0045f674 bx lr

In Listing 2, instructions at 0x28804, 0x28810, and 0x2881c are epilogue
instructions corresponding to the prologue instruction at 0x287bc.

Listing 3 shows an example in which there is another push instruction be-
fore the prologue instruction that pushes register lr. Correspondingly, the last
three instructions first pop out whatever was pushed at 0x45f62a, adjust sp to
offload whatever was pushed at 0x45f628, and, in the end, use a direct branch
instruction bx lr to return back to its caller.

Listing 4: Different registers in
prologue and epilogue

1 VTestURadio10cellCreateEi:
2 0045fc68 push {r0, r1, r4, lr}
3 0045fc6a adds r1, #0x1
4 ...
5 0045fc84 add r0, sp, #0x4
6 0045fc86 blx 0x7d3ca4
7 0045fc8a mov r0, r4
8 0045fc8c pop {r2, r3, r4, pc}

Listing 5: Different number of reg-
isters in prologue and epilogue

1 sub_46724:
2 004616d4 push {r0,r1,r4,r5,lr}
3 004616d6 mov r4, r0
4 004616d8 ldrb.w r3,[r0,#0x1a8]
5 004616dc cbz r3, 0x46171c
6 ...
7 0046171c add sp, #0x8
8 0046171e pop {r4, r5, pc}

Listing 4 shows an example where the same number of registers are pushed
and popped, but they are of different registers. Listing 5 shows another example
where different numbers of registers are pushed and popped.

Fig. 7 presents examples of correct and incorrect randomization results for
the original function which is similar with the function shown in Listing 5.
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