
AppTrace: Dynamic Trace on Android Devices
Lingzhi Qiu, Zixiong Zhang, Ziyi Shen, Guozi Sun

College of Computer
Nanjing University of Posts and Telecommunications, Nanjing, China

Abstract—Mass vulnerabilities involved in the Android alter-
native applications could threaten the security of the launched
device or users data. To analyze the alternative applications,
generally, researchers would like to observe applications’ runtime
features first. Then they need to decompile the target application
and read the complicated code to figure out what the application
really does. Traditional dynamic analysis methodology, for in-
stance, the TaintDroid, uses dynamic taint tracking technique to
mark information at source APIs. However, TaintDroid is limited
to constraint on requiring target application to run in custom
sandbox that might be not compatible with all the Android
versions. For solving this problem and helping analysts to have
insight into the runtime behavior, this paper presents AppTrace, a
novel dynamic analysis system that uses dynamic instrumentation
technique to trace member methods of target application that
could be deployed in any version above Android 4.0. The paper
presents an evaluation of AppTrace with 8 apps from Google
Play as well as 50 open source apps from F-Droid. The results
show that AppTrace could trace methods of target applications
successfully and notify users effectively when some sensitive APIs
are invoked.

I. INTRODUCTION

Traditional dynamic analysis methods such as TaintDroid
uses dynamic taint tracking technique to mark information
at source APIs to identify when applications send privacy
sensitive information to network servers. TaintDroids custom
sandbox environment differs from the official running environ-
ment that Google provides, hence, it is not compatible with all
the Android versions [5]. This motivates us to design a stable
dynamic analysis system which could be compatible with as
many different Android versions as possible.

Researchers begin with dynamic analysis because applica-
tion source code is usually unavailable. By dynamic analysis,
Researchers can observe applications runtime behavior. The
next step in studying applications is trying to decompile the
application to take the smali code or Java code. Another
motivation is to help reserchers having insight into Android
applications runtime features and closing the distance between
static analysis and dynamic analysis. The above motivates our
work on the AppTrace framework. For example, AppTrace
logs all Java method called by a callback method when a
researcher clicks a Button. And if one of these Java methods
belongs to the sensitive API set which are predefined, our
system will notify the researcher. Consequently, the researcher
will locate the corresponding Java code as soon as possible.

In this paper, we implement the prototype of AppTrace
system and run it on various Android platforms. The result
shows that the AppTrace system could execute stably on any
of these platforms. Besides, we have chosen 8 Apps in Google

Play and 50 open source Apps from F-Droid randomly to
evaluate our system. The result indicates that AppTrace could
effectively trace all Java methods and feedback sensitive APIs.

Our proposed solution in this paper makes the following
contributions:

a) In contrast to traditional dynamic analysis platform such
as TaintDroid which is a custom sandbox environment, we
propose a dynamic analysis system that could run stably in
any version of Android OS.

b) We propose a novel method to trace all Java methods
called by a declared method in a class and feedback the
sensitive API that we predefined before. As a result, we have
succeeded in closing the gap between dynamic analysis and
static analysis.

c) We implement the prototype of AppTrace system and
evaluate it by several real-world applications. The results show
that our system could effectively trace the Java methods.

The rest of this paper is organized as follows: Section
II introduces Android background. Section III describes our
system design. Section IV presents the implementation of
our system. Section V evaluates our system and analyzes
the results. Section VI describes related work. Section VII
summarizes our conclusions and future work.

II. BACKGROUND

From the perspective of developers, Android applications
could be classified into two categories: system applications and
alternative applications. System applications are preinstalled in
the device while alternative applications are downloaded from
App markets or other source by users. Android applications are
usually written by Java. But sometimes, certain functions are
realized by native code such as C/C++ because of execution
efficiency or library reusability.

Fig. 1illustrates the launch process of an Android applica-
tion from the user’s click to the interface being visible. The
Launcher is responsible for the application startup, which is
also an application. After a user clicks the application icon, the
Launcher tells Activity Manager Service who needs to create
a new process of the Activity via the Android particular IPC
mechanism called Binder. Zygote is the parent process of all
applications and system services in Android. It is created by
the first process of Linux called init. Hence when the Activity
Manager Service receives the request from the Launcher it
will ask the Zygote process to fork out a new Linux process
where the application will launch the first Activity.

8773

2

Launcher

Activity Manager Service

Activity ThreadZygote

User Click

fork

Socket IPC

Binder IPC

Fig. 1. The launch process of an Android App.

III. DESIGN AND CHALLENGES

In this section, we discuss the challenges faced with our
prototype and the outline of the prototype implementations.

A. The Challenges

1) Without Apks or Source Code: Assume that we have
no access to either installation package of target applica-
tions or source codes. Static analysis of applications tends
to depend on reverse engineering with apktools, dex2jar or
other similar tools. However, considering that we do not
accurately acknowledge the version of target applications, and
the manufacturer might have changed the original source code
to add or modify functionality. Therefore, we prefer not to use
the apks or source code.

2) Running on Android Devices: When it comes to method
trace or functions called records, some sandbox used to ana-
lyze application can achieve this goals, such as Droidbox [4].
However, to the best of our knowledge, most of such sandbox
are deployed on Windows or Linux and may be troublesome
for users to set up the necessary runtime environment. Further-
more, apks or source code are required for these tools, which
reduces their availability.

3) Scalability: AppTrace can be used to trace sensitive
APIs invoked by applications and classification of sensitive
APIs should be defined in our process context. However,
the diversity between normal APIs and sensitive APIs varies
in different users. Besides, along with fast development of
Android, new APIs are bound to be put forward or some old
APIs may be modified. Under that circumstances, scalability
becomes an tough issue. In addition to scaling availability of
AppTrace, we must provide users with interface to improve
the definition of sensitive APIs.

B. The Design

An overview of our AppTrace architecture is illustrated in
Fig. 2. Referring to this figure, we divide our system into
three parts or procedures by time sequence that each part is
in action: Preprocessor, Hijacking and Injection, Records and
Feedback.

 AppTrace

List Applications & Choose Target Applications

Activities Services Permissions

Runtime ExecutionSensitive Classes Methods

LibTrace

Map Reflect

Data Transfer

Parameters & Results

Preproccessed

Hijacking & Injection

PackageManger

Classification & Analysis &

Display

Preprocessor Records & Feedback

Fig. 2. AppTrace architecture overview.

TABLE I
LOADING TIME

AppPackageName Size (MB) Original (sec) After Monitoring (sec)

com.xunxin 1.6 <1 <1

com.moji.mjweather 8.7 <1 >30

com.tencent.mm 22.6 <1 >55

1) Preprocessor: During the procedure of preprocessor,
AppTrace determines which methods should be traced and
make preparation for query from LibTrace. Android applica-
tions are composed of multiple packages and classes and there
are plenty of methods invoked during runtime. In original,
AppTrace intends to hook and monitor all methods in certain
applications. This scheme is full-scale and exhaustive, but
inevitably makes performance of target application worse. One
primary principle of dynamic analysis is influencing the target
application as less as possible. While being monitored by App-
Trace, either system overhead or coefficient of performance
should not be affected apparently. We demonstrates it with
some experiments, and the results are showed in Tab. I.

In this experiment, we choose different applications with
various sizes, and record time consumption between clicking
an application icon and the first activity appearing. After com-
paring time overhead before and after monitoring applications,
we find that the larger the application size, the more the
performance overhead. So we apply another scheme that hook
some sensitive APIs as an alternative. For example, while
handling applications with permissions of Internet, AppTrace
may only focus on APIs correlated to Internet operations.

2) Hijacking and Injection: Application Instrumentation is
often used to insert some customized codes into target process
under the circumstances that maintaining the integrity of the
process logic. Analyzing feedbacks by these customized codes,
we can obtain control flow or data flow information. In view of
Android applications, traditional static instrumentation relies
on smali codes de-compiled from Android’s dex file. This
technique finds position possible to be instrumented in smali
files and inject customized codes. Finally, these tampered
smali files need to be repackaged and installed into Android
devices. The procedure is not only troublesome but also
unstable. Errors of robustness or integrity often take place
during its runtime.

Comparatively, dynamic instrumentation are considered as

8774

3

a better option. With dynamic instrumentation, customized
codes are injected dynamically while the application is being
launched, which avoids complex procedure of static instru-
mentation. What’s more, it does not require to modify the
source codes, which may bring up integrity issues. Generally
speaking, our AppTrace relies on the dynamic instrumentation
and executes customized codes before or after methods called.

3) Records and Feedback: After the operations of ap-
proaches mentioned above, data about methods runtime can be
obtained in the context of target applications. Next, AppTrace
needs to acquire these data and interact with users. In order
to interact with users in a friendly way, AppTrace will send
a notification or make a toast to the forehead activity so
as to notice that AppTrace is running. At the same time,
LibTrace is busy in collecting information and transferring
data to AppTrace.

IV. IMPLEMENTATION

A. Information Gathering

1) Activities and Services: A major goal of our AppTrace
is to establish the relationship between user’s behavior and
executed codes. So AppTrace lists activities and services
declared in Android-Manifest. Meanwhile, users can select a
target activity or a service they are interested in. Traditional
static instrumentation obtains activities or services belonging
to certain application via decompiling the Android Manifest
file. AppTrace approaches the application information with
utilization of PackageManager, which retrieves various kinds
of information related to the application packages that are
currently installed on the device. Once one activity or service
selected, AppTrace writes its class name, a part of Android
Storage Options, into SharedPreferences, and provides a gen-
eral framework that allows you to save and retrieve persistent
key-value pairs of primitive data types. To a certain extent,
SharedPreferences only transfers data in single application, but
LibTrace can approach the xml file which deposit key-value
pairs and obtain activity or service you selected.

2) Sensitive APIs: As third-party applications get access to
system resources, Android system will check their permissions
which are declared while install-time are unchangeable. Unlike
all methods in activities or services that will be hooked and
traced, only several or even none sensitive APIs will be hooked
by LibTrace. Reasons are as followed,.Firstly, Android defines
hundreds of permissions categorized into three threat levels
and each permission may be associated with a number of
methods. So if all methods have been hooked, performance
overhead of the target application is sure to be lowered
drastically and even the system shut down. Secondly, from
a developer’s or user’s perspective, permissions or related
methods are just strings. Definition of sensitive APIs are in
terms of different applications or different usage situation.

AppTrace contains a built-in mapping table from permis-
sions to correlated application programming interfaces. Addi-
tionally, AppTrace also provides users with interface to modify
this mapping table. Due to the limitation of pages, here we
only take some common permissions for example, such as

TABLE II
MAPPING TABLE

Resource Permission Class API

SMS send sms android.telephony.SmsManager
sendDataMessage
sendTextMessage
sendMultipartTextMessage

unique device ID
read phone state android.telephony.TelephonyManager

getDeviceId

phone number getLine1Number
serial number of SIM getSimSerialNumber
unique subscriber ID getSubscriberId
contacts read contacts android.content.ContentResolver query
internet internet org.apache.http.client.HttpClient execute

SMS, device id etc. Details are showed in Tab. II.In our future
work, the predefined mapping table will also be optimized
completely.

B. LibTrace Injection
As stated in section II, Zygote is the parent of all App

process and it preloads all necessary Java classes and resources
before the first Dalvik VM being created. All applications can
be considered as a copy of it originally, benefited from the
fork mechanism in Linux. The startup of Zygote is triggered
from the app process by Init.rc after Service Manager and
others. On account of the mechanism and function of Zygote,
we would like to replace the app process, which is located in
/system/bin/app process, so as to injecting our LibTrace into
target applications.

Xposed Framework [2] takes advantage of this mechanism
and it will replace the app process file with a modified
one. While new Dalvik VM is being created, some external
jar packages are loaded, including our LibTrace, And these
sensitive APIs will be replaced with certain native methods,
which are finally redirected to our customized codes. The
superiority of Xposed Framework lies in that we only need to
focus on the application framework layer and our AppTrace
is based on this framework. The overall course of hooking
methods in target application is illustrated in Fig. 3.

Android Devices

LibTrace

Zygote

Target Application

External Packages Loaded in Startup

Finding and Hooking

Methods
Loading Package

Redirect

Redirect

Calling Hooked Methods
Execute Customized Codes

Hijack and Feedback

before:args

after:results or throws

Fig. 3. Injection Procedure.

C. Calling LibTrace
Before or after the hooked methods are invoked in target

application, LibTrace would be woke up and execute our
customized codes. Prime missions of LibTrace here are two
steps: collecting runtime information and pass them back to
AppTrace. Generally speaking, LibTrace will record parame-
ters and results of the hooked methods. It will find out classes
of parameters and dispose of them roughly.

8775

4

Disposal of activities or services may be more complex.
Because AppTrace is designed to associate users’ behavior
with codes, all methods in activities or services should be
hooked. However, there are so many methods called through-
out activities’ life-cycle and it is difficult to hook these
methods one by one. Therefore, AppTrace invoke the Debug
class provided by Android SDK to generate log files for certain
methods. Debug can create log files that give details about an
application, such as a call stack and start/stop times for any
running methods. It can provide various debugging functions
for Android applications, including tracing and allocation
counts. LibTrace calls the startNativeTracing function before
a hooked method running and stops Debug after the method
being over.

At last, LibTrace will transfer information collected in the
past to AppTrace via the ContentProvider initialized by App-
Trace. In order to avoid blocking target application, LibTrace
prefer to start new threads. Some time consuming tasks are
implemented in these threads, such as reading data from
log files created by Debug. Due to Android permissions’
mechanism, these log files can only be approached in the
context of target applications.

D. Analysis and Display

While receiving data passed from LibTrace, AppTrace will
send flags back and restore these data into SQLite. How to
analyze these data with great redundancy and obtain important
information is another problem. AppTrace are concentrated
on two aspects: traversing data from log files to discover
whether there has any hidden APIs, and handle sensitive APIs’
invoked sequence to match any harmful behavior. Single call
of sensitive APIs is normal, but series call of sensitive APIs
that has been invoked may be suspicious. Finally, AppTrace
offers end-users several interface to retrieve and check trace
information.

V. EVALUATION

In this section, we present the evaluations of our AppTrace
prototype. The goals of the evaluations are threefold: 1)
AppTrace must be demonstrated to be stable and usable for
end users. 2) AppTrace must be capable of tracing most
of sensitive methods selected by users. 3) Performance loss
incurred by AppTrace overhead must be measured.

A. Case Study

In this part, we take an application as a case study. WeChat
is a popular social networking software among released by
Tencent and its package name is com.tencent.mm [8]. At first
we aim to LauncherUIActivity class so all its methods declared
in this activity would be hooked in LibTrace. In addition, all
sensitive APIs related to its required permissions would be
hooked by default.

While the target application running and LibTrace been
triggered, LibTrace will provide users with notification, as
illustrated in Fig. 4.

Fig. 4. LibTrace, running in the target application and notifies users.

TABLE III
STABILITY TEST ON DIFFERENT PLAYFORMS

Version API Level Stable

Ice Cream Sandwich 14
√

15
√

Jelly Bean
16

√

17
√

18
√

KitKat 19
√

After LibTrace fulfills its mission in the target application
and transfers data back to AppTrace, it also sends a feedback
and users can read the method trace log in AppTrace. For each
activity or service, AppTrace lists sensitive methods belonging
to it and hooked by LibTrace. If certain sensitive method in
list is clicked, AppTrace will display package name, method
name, method parameters and trace logs in a table. Details are
illustrated in Fig. 5.

Fig. 5. Results of runtime information for a certain method.

B. Stability

Referring to official statistics from Google [1], more than
80 percent of Android devices have been updated beyond
Android 4.0. Therefore we launch AppTrace on several devices
including simulators and real ones. The results in Tab. III
demonstrate that AppTrace is compatible with Android ver-
sions beyond 4.0.

8776

5

TABLE IV
TRACE INFORMATION OF SENSITIVE APIS

ApplicationName Trace log send sms read phone state read contacts internet
WeChat

√
none none query execute

PPTV
√

none getDeviceId none execute
XunFengZhongZi

√
none none none execute

I’go Reader
√

none getDeviceId query execute
QuanXianGuanLi

√
none none none execute

Pico TTS
√

none none none execute
NetFix

√
none none none execute

Youni
√

sendTextMessage getDeviceId query execute

C. Functional Evaluation

First, we randomly select 8 real Apps from Google Play to
evaluate AppTrace. Our methodology for this evaluation was
to: (a) decompile the target App by apktools and search all
sensitive APIs in samli codes; (b) install AppTrace; (c) run
the App and randomly select certain component to observe
whether AppTrace generates trace log; (d) record the sensitive
APIs AppTrace warned and compare with the results in step
one. Experimental results are illustrated in Tab. IV.

In the table above, none means this application does not
declare the permission. The table shows that AppTrace could
trace all the target methods successfully and trigger the call-
back function efficiently when certain sensitive API has been
called. However, we also find some sensitive APIs failing to
be captured. After debugging with logcat tools, we infer that
there are several possible reasons:

1) Overloading Methods: This means that methods within a
class can have the same name if they have different parameter
lists. Because methods are hooked according to their names,
it is likely to hook incorrect method when we resolve its
parameters referring to the other overloading method.

2) Encapsulation: Some sensitive APIs encapsulated for
convenient development are not the real execution function.
For example, developers tend to use the ’org.apache.http.client.
HttpClient.execute’ function to initiate web request. But in
experiments we find that this function cannot be hooked,
while the function: org.apache.http.impl.client.AbstractHttp
Client. execute can be hooked, which is invoked by
org.apache.http.client.HttpClient.execute. Fortunately, we
could look up the trace log and find out the real invoked
methods.

3) Sub threads: If some sensitive APIs are invoked in certain
sub thread started by the main thread, AppTrace have the
possibility to fail in hooking. This is due to the exception
introduced by Xposed framwork.

Finally, we pick 50 open source Apps in the F-Droid for
further test. The results show that AppTrace could trace all
target methods in 50 Apps, i.e., the success rate is 100%. It
also triggers 317 times sensitive API calls in a total of 382.
The accuracy rate is 83%.

D. Performance Overhead

To compute the overhead that is introduced by AppTrace,
we use two ways: CPU utilization rate and Java Mircobench-
mark.

1) CPU utilization rate: First, we choose three popular
Apps in Xiaomi market [9] which is a Chinese alternative
application market. Then we test the CPU utilization rate by
Linux top command and compare the performance differences
between the original system and that loaded with AppTrace.
To decrease the influence introduced by random events, each
app should be tested ten times and we compute the average
value of them. Fig. 6 displays the test results. We can find that
the CPU utilization rate has been increased 20.7% averagely.
We believe this overhead is acceptable in consideration of the
temporality during CPU run and the resource abundance with
the development of Android devices.

Fig. 6. CPU utilization rate.

2) Java Mircobenchmark: The CaffeineMark [10] is a
series of tests that measure the speed of Java programs running
and scores correlate with the number of Java instructions
executed per second. We used an Android port of the standard
CaffeineMark 3.0. Results for the benchmark tests are depicted
in Fig. 7. Studying the results, we conclude that the method
benchmark experiences the greatest overhead while that is the
string in TaintDroid. This is under control because our targets
are member methods. The overall results indicate cumulative
score across individual benchmarks. Here, the original An-
droid system had an average score of 12990, and AppTrace
measured 11784. AppTrace has a 9% overhead with respect
to the original system.

Fig. 7. Java microbenchmark.

VI. RELATED WORK

Android application analysis has been a hot field in aca-
demic research. Previous works usually look at permission,
code, and runtime behavior.

8777

6

Permission.The Kirin install-time certification system, pro-
posed by Enck et al. [11], was the first security policy
extension for Android. Pandita et al. [12] proposed WHYPER
framework on USENIX Security 2013. They used Natural
Language Processing (NLP) techniques to identify sentences
that describe the need for a given permission in an application
description.

Code.Chin et al. [13] proposed ComDroid, which operates
on use disassembled DEX bytecode. Grace et al. [14] devel-
oped Woodpecker which does control flow analysis based on
the smali code. However, above techniques belong to static
analysis which not sufficient in analyzing the GUI components
such as button, and they do not have runtime information. Our
AppTrace makes use of the dynamic analysis to trace Java
methods and could help the static analysis.

Runtime behavior.Enck et al. [15] proposed TaintDroid to
identify when applications send privacy sensitive information
to network servers by dynamic taint tracking analysis. Based
on TaintDroid, researchers proposed several improvements
such as AppFence [16], AppsPlayground [17]. But the
sandbox environment is different from the official running
environment and not compatible with all Android versions. In
contrast, our AppTrace system could run stably on any version
above Android 4.0.

VII. CONCLUSION AND FUTURE WORK

In this paper, we present AppTrace, a prototype system
based on dynamic instrumentation, to help analyzing and
tracing methods invoked during applications’ runtime. Any
normal or sensitive action can be mapped into a series of
methods. So we can have insight into the target applications
runtime features. The evaluation results have shown that
AppTrace succeed to report sensitive APIs invoked in various
applications.

Currently, the predefined mapping table between permis-
sions and sensitive APIs are incomplete. In addition, the
dynamic instrumentation framework which AppTrace relies
on may be imperfect. In the further work, we intend to learn
the method introduced by Felt et al. [18] to match API calls
and permissions for completing the predefined mapping table.
Besides, we could modify the Xposed dynamic instrumenta-
tion framework or adopt other framework such as Dynamic
Dalvik Instrumentation Toolkit [3] to improve the efficiency
of LibTrace and decrease performance overhead. Moreover, in
this paper, we havent aim for the problem whether the call of
sensitive APIs results in privacy leakage or not yet. We notice
that the AppIntent [19] has done many works on it which is
worthy of our further study. At last, from the point of privacy
protection, we could use some data to replace original sensitive
data in case of privacy leakage.

ACKNOWLEDGEMENTS

The authors would like to thank the reviewers for their de-
tailed reviews and constructive comments, which have helped
improve the quality of this paper. Thanks Daoyuan Wu, who
is now studying in the Hong Kong Polytechnic University

(PolyU). Daoyuan has given us so many good suggestion about
this work. This paper is supported by the National Natural
Science Foundation of China (No. 61373006), the Foundation
of Nanjing University of Posts and Telecommunications (No.
NY213160).

REFERENCES

[1] Google, ”Dashboards,”http://developer.android.com/about/dashboards/index.html,
March 20, 2014.

[2] Rovo89, ”[Framework only!] Xposed - ROM modding without modify-
ing APKs (2.6.1),” http://forum.xda-developers.com/xposed/framework-
xposed-rom-modding-modifying-t1574401, May 20, 2014.

[3] Crmulliner, ”DDI - dynamic dalvik instrumentation toolkit,”
https://github.com/crmulliner/ddi, January 6, 2014.

[4] Google Project Hosting, ”DroidBox, Android application sandbox,”
http://code.google.com/p/droidbox, March 20, 2014.

[5] Realtime Privacy Monitoring on Smartphones,
http://www.appanalysis.org, April 14, 2014.

[6] Google play, https://play.google.com/store, March 14, 2014.
[7] Free and Open Source App Repository, https://f-droid.org/,March 14,

2014.
[8] Google play, https://play.google.com/store/apps/details?id=com.tencent.mm&hl=zh CN,

May 20, 2014.
[9] Xiaomi market. http://app.mi.com, May 24, 2014.

[10] CaffeineMark. http://www.benchmarkhq.ru/cm30/index.html. May 24,
2014.

[11] W. Enck, M. Ongtang, and P. McDaniel, ”On lightweight mobile phone
application certification,” in Proceedings of the 16th ACM Conference
on Computer and Communications Security, 2009, pp. 235-245.

[12] R. Pandita, X. Xiao, W. Yang, W. Enck, and T. Xie, ”WHYPER: towards
automating risk assessment of mobile applications,” in Proceedings of
the 22nd USENIX Security Symposium, Washington DC, USA, 2013, pp.
14-16.

[13] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner, ”Analyzing inter-
application communication in Android,” in Proceedings of the 9th
International Conference on Mobile Systems, Applications, and Services,
2011, pp. 239-252.

[14] M. C. Grace, Y. Zhou, Z. Wang, and X. Jiang, Systematic Detection of
Capability Leaks in Stock Android Smartphones., in NDSS, 2012.

[15] W. Enck, P. Gilbert, B. G. Chun, L. P. Cox, J. Jung, P. McDaniel, and A.
N. Sheth, ”TaintDroid: an information-flow tracking system for realtime
privacy monitoring on smartphones,” in Proceedings of the 9th USENIX
Conference on Operating Systems Design and Implementation, 2010,
pp. 1-6.

[16] P. Hornyack, S. Han, J. Jung, S. Schechter, and D. Wetherall, ”These
aren’t the droids you’re looking for: retrofitting android to protect
data from imperious applications,” in Proceedings of the 18th ACM
Conference on Computer and Communications Security, 2011, pp. 639-
652.

[17] V. Rastogi, Y. Chen, and W. Enck, ”AppsPlayground: automatic security
analysis of smartphone applications,” in Proceedings of the third ACM
Conference on Data and Application Security and Privacy, 2013, pp.
209-220.

[18] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner, ”Android
permissions demystified,” in Proceedings of the 18th ACM Conference
on Computer and Communications Security, 2011, pp. 627-638.

[19] Z. Yang, M. Yang, Y. Zhang, G. Gu, P. Ning, and X. Wang, ”Appintent:
Analyzing sensitive data transmission in android for privacy leakage
detection,” in Proceedings of the 2013 ACM SIGSAC conference on
Computer & communications security, 2013, pp. 1043C1054.

8778

	Introduction
	Background
	Design and Challenges
	The Challenges
	Without Apks or Source Code
	Running on Android Devices
	Scalability

	The Design
	Preprocessor
	Hijacking and Injection
	Records and Feedback

	Implementation
	Information Gathering
	Activities and Services
	Sensitive APIs

	LibTrace Injection
	Calling LibTrace
	Analysis and Display

	Evaluation
	Case Study
	Stability
	Functional Evaluation
	Performance Overhead
	CPU utilization rate
	Java Mircobenchmark

	Related Work
	Conclusion and Future Work

