
MopEye: Monitoring Per-app Network Performance
with Zero Measurement Traffic

Daoyuan Wu§
∗

, Weichao Li†, Rocky K. C. Chang†, and Debin Gao§
§School of Information Systems, Singapore Management University
†Department of Computing, The Hong Kong Polytechnic University

§{dywu.2015, dbgao}@smu.edu.sg, †{csweicli, csrchang}@comp.polyu.edu.hk

ABSTRACT
Mobile network performance measurement is important
for understanding mobile user experience, problem di-
agnosis, and service comparison. A number of crowd-
sourcing measurement apps (e.g., MobiPerf [4, 6] and
Netalyzr [5, 7]) have been embarked for the last few
years. Unlike existing apps that use active measure-
ment methods, we employ a novel passive-active ap-
proach to continuously monitor per-app network per-
formance on unrooted smartphones without injecting
additional network traffic. By leveraging the VpnSer-
vice API on Android, MopEye, our measurement app,
intercepts all network traffic and then relays them to
their destinations using socket APIs. Therefore, not
only MopEye can measure the round-trip time accu-
rately, it can do so without injecting additional traffic.
As a result, the bandwidth cost (and monetary cost of
data usage) for conducting such a measurement is elim-
inated, and the measurement can be conducted free of
user intervention. Our evaluation shows that MopEye’s
RTT measurement is very close to result of tcpdump and
is more accurate than MobiPerf. We have used MopEye
to conduct a one-week measurement revealing multiple
interesting findings on different apps’ performance.

CCS Concepts
•Networks→Network measurement; Mobile net-
works;

Keywords
Measurement Tool; Mobile Network Performance

∗Most work by this author was performed at HK PolyU.

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.

CoNEXT Student Workshop’15, December 1, 2015, Heidelberg,
Germany.
c© 2015 ACM. ISBN 978-1-4503-4066-3/15/12. . . $15.00

DOI: http://dx.doi.org/10.1145/2842665.2843560

(a) An all-app view. (b) An individual-app view.

Figure 1: MopEye’s user interfaces.

1. INTRODUCTION
In this paper, we propose a novel passive-active method

to continuously monitor per-app network performance
on unrooted smartphones without injecting additional
network traffic. Specifically, we utilize the VpnService
API available on both Android [9] and iOS [2] platforms
for the measurement and implement it in MopEye (MO-
bile Performance Eye), our Android measurement app.
With the VpnService service, MopEye passively cap-
tures the traffic initiated by all apps and the return
traffic. MopEye then forwards the captured IP packets
to the remote servers using socket calls. Since MopEye
directly communicates with the remote servers, it can
estimate the round-trip time (RTT) based on the socket
calls. As a result, no additional network traffic is ever
incurred. MopEye also does not need the root privilege
which is required for the tcpdump-based passive mea-
surement. Figure 1 shows the two most important user
interfaces of MopEye.

2. MopEye OVERVIEW
Figure 2 presents an overview of MopEye. Using the

Facebook app as an example, we walk through the main
steps for MopEye to measure its network performance.

1. Packet capturing. We leverage Android’s Vp-

Apps

Tunnel

Notes: TCP state

machine

Socket

instance

Virtual

network

interface

MopEye

TCP/UDP client n

....

TCP/UDP client 1

....

relay

Servers

internal connections external connections

packet parsing

and mapping

....

(raw IP packets) (socket channels)

measurement

points

....

Figure 2: An overview of MopEye.

nService APIs to build a virtual network inter-
face (green box in Figure 2). The interface en-
ables MopEye to intercept all incoming and out-
going traffic of Facebook.

2. Packet parsing and mapping. MopEye then
parses the captured packets to obtain the source
and destination IP and TCP/UDP headers. More-
over, MopEye identifies the corresponding app for
per-app measurement.

3. Packet relaying. MopEye works like a proxy in
relaying traffic. As Figure 2 shows, MopEye main-
tains two separate connections with the Facebook
server and the app, respectively. For the exter-
nal connection with the server, MopEye allocates
a TCP client object in memory and uses its socket
instance to communicate with the server. For the
internal connection with the app, as no TCP head-
ers can be retrieved from the socket APIs, MopEye
creates its own user-space TCP stack to manage
a state machine, and then assembles and forwards
packets to the tunnel. MopEye splices the two by
cross-referencing each TCP client object and its
state machine.

4. Measurement methodology. MopEye measures
the RTT between itself and the Facebook server
based on the sockets calls made for the external
connection. Specifically, MopEye computes the
SYN-ACK RTT from the connect() call. Experi-
mental results show that only this call can accu-
rately and stably reflect a single round of packet
exchange.

5. Measurement results. As shown in Figure 1,
MopEye displays the RTT results in all-app and
individual-app views. It shows the number of con-
nections made for each app since the beginning of
the monitoring and reports the minimum, maxi-
mum, and mean RTTs.

We have overcome a number of challenges in the de-
sign and implementation of MopEye, which cannot be
elaborated here due to the space limitation.

Table 1: The measurement accuracy comparison.

Destinations
MopEye (mean, in ms) MobiPerf (mean, in ms)
tcp Mop

δ
tcp Mobi

δ
dump Eye* dump Perf

Google
4.26 4 0 4.29 16.4 12.11

(216.58.221.132)
4.47 5.5 1.03 4.35 18.5 14.15
5.32 5 0 4.85 18 13.15

Facebook
36.55 37 0.45 36.39 59.5 23.11

(31.13.79.251)
36.55 37 0.45 36.72 55.2 18.48
38.54 38.5 0 46.10 63.2 17.10

Dropbox
284.85 284.5 0 361.76 409.7 47.94

(108.160.166.126)
390.94 391 0.06 388.94 411.5 22.56
513.78 513.5 0 395.87 475.2 79.33

* We round MopEye’s µs-level results to ms-level, e.g., 4.135ms to 4ms.

3. EVALUATION

3.1 Measurement Accuracy and Overhead
Measurement accuracy. We compare MopEye with

MobiPerf v3.4.0 (the latest version at the time of our
evaluation), which is powered by state-of-the-art Mobi-
lyzer library [6]. We use MobiPerf’s HTTP ping [3] for
comparison because it also uses SYN-ACK for RTT mea-
surement. We run tcpdump to provide the reference
measurement results. In Table 1, we present three sets
of results for Google, Facebook, and Dropbox, which
have different ranges of RTTs. Each result is the mean
of ten independent runs because MobiPerf does not pro-
vide detailed results of each run. The difference between
results of tcpdump and MopEye/MobiPerf is denoted by
δ. This table clearly shows that MopEye has a much
better accuracy than MobiPerf — MopEye’s measure-
ment deviates from tcpdump’s by at most 1ms whereas
MobiPerf’s deviation ranges from 12ms to 79ms.

By comparing MobiPerf’s codes with our MopEye’s
implementation, we identify three main contributing
factors for MopEye’s higher accuracy. First, MopEye
uses the low-level socket connect() call, instead of the
HTTP-level HttpURLConnection.connect() in MobiPerf.
Second, the timestamps for MopEye are collected just
before and just after the connect() call. In contrast,
MobiPerf’s measurement includes the overhead of in-
voking pre-connect functions, such as openConnection().
Third, MopEye employs the more accurate nanosecond-
level timestamp method, rather than the millisecond-
level currentTimeMillis() in MobiPerf.

Network delay overhead. It is important for Mop-
Eye not being a bottleneck to other apps. We thus
measure the additional delay experienced by other apps
when MopEye is active. We measure the overhead of
the SYN-ACK packets using our measurement tool that
invokes connect() to measure the connection time. By
subtracting this delay by the MopEye measurement to
the same destination, we obtain the delay overhead. For
the data packets, we use the popular Ookla Speedtest
app [8] to measure the delay with and without MopEye.
Their difference is the overhead introduced by MopEye.
Both experiments are repeatedly run on a Nexus 4 run-
ning Android 5.0. With 95% confidence interval, the

RTT (ms)
100 102 104

C
D

F

0

0.2

0.4

0.6

0.8

1

Facebook
WeChat
Instagram
Twitter
Weibo

(a) Under WiFi.

RTT (ms)
100 102 104

C
D

F

0

0.2

0.4

0.6

0.8

1

Facebook
WeChat
Instagram
Twitter
Weibo

(b) Under 4G.

Figure 3: Top five apps’ performance in our dataset.

mean delay overhead of a round of SYN-ACK packets is
4.15∼5.98ms, and that of data packets is 1.22∼2.18ms.
Considering that the average RTT of the AT&T LTE
network is about 75.47ms [1], we find the additional
delay introduced by MopEye quite acceptable.

3.2 One-week Measurement Results
We performed a one-week measurement on a Nexus 5

in Hong Kong on May 2015. MopEye relays a total
of 5,598 connections out of which 5,410 are successful
connections (188 are nonresponsive ones due to, e.g.,
unavailable servers). Among the 5,410 RTTs collected,
4,025 are over WiFi with the remaining 1,385 over LTE
4G network.

We plot the RTT distribution for the five most popu-
lar apps in Figure 3(a) (for WiFi) and Figure 3(b) (for
4G). Facebook, WeChat, and Instagram achieve bet-
ter performance than Twitter and Weibo in the WiFi
network, as most of the RTTs (>85%) for these three
apps are less than 20ms. Over 4G, however, Twitter and
Weibo outperform Facebook which suffers from a signifi-
cant performance degradation with the mean RTT risen
from 26.1ms to 188.4ms. To understand why Facebook
experiences such a huge RTT hike in the 4G network,
we analyze the servers connected, and find that there
are no local Facebook servers hosted in Hong Kong for
our tested 4G network, whereas local servers exist for
the WiFi network.

As for the 188 nonresponsive connections, they either
time out or fail for other reasons. Most of these connec-
tions come from WeChat and a news app by NetEase
(the most popular news app in China). Our investi-
gation discovers that WeChat’s failures are due to their
DNS misconfiguration for hkminorshort.weixin.qq.com.

When WeChat queries this domain through the smart-
phone’s DNS server (8.8.8.8), the latter therefore re-
sponds with 1.1.1.1 because of its wrong or unregis-
tered DNS configuration. This finding was confirmed
and acknowledged by Tencent, and they fixed the prob-
lem thereafter. On the other hand, NetEase’s failures
are due to their extremely large RTTs, causing 18.1%
connections to exceed MopEye’s three-second timeout
setting.
4. CONCLUSION AND FUTURE WORK

We proposed a novel measurement app, called Mop-
Eye, to monitor per-app network performance on un-
rooted smartphones. We will deploy MopEye to Google
Play soon for a large-scale measurement study.

Acknowledgements
We thank all four anonymous reviewers for their help-
ful comments. This work was partially supported by a
grant (ref. no. ITS/073/12) from the Innovation Tech-
nology Fund in Hong Kong.

5. REFERENCES
[1] Y. Chen, E. Nahum, R. Gibbens, and D. Towsley.

Measuring cellular networks: Characterizing 3G, 4G,
and path diversity. In UMass Amherst Technical
Report: UM-CS-2012-022, 2012.

[2] Configure and manage VPN connections
programmatically in iOS 8.
http://ramezanpour.net/post/2014/08/03/
configure-and-manage-vpn-connections-programmatically-in-ios-8/.

[3] W. Li, R. Mok, D. Wu, and R. Chang. On the accuracy
of smartphone-based mobile network measurement. In
Proc. IEEE INFOCOM, 2015.

[4] MobiPerf on Google Play. https://play.google.com/
store/apps/details?id=com.mobiperf.

[5] Netalyzr on Google Play.
https://play.google.com/store/apps/details?id=edu.
berkeley.icsi.netalyzr.android.

[6] A. Nikravesh, H. Yao, S. Xu, D. Choffnes, and Z. Mao.
Mobilyzer: An open platform for controllable mobile
network measurements. In Proc. ACM MobiSys, 2015.

[7] N. Rodriguez, S. Sundaresan, C. Kreibich, N. Weaver,
and V. Paxson. Beyond the radio: Illuminating the
higher layers of mobile networks. In Proc. ACM
MobiSys, 2015.

[8] Speedtest.net on Google Play. https://play.google.com/
store/apps/details?id=org.zwanoo.android.speedtest.

[9] VpnService | Android Developers. http://developer.
android.com/reference/android/net/VpnService.html.

